

12 interdigital

Energy-aware images: Quality of Experience vs Energy Reduction

Olivier Le Meur, <u>Claire-Hélène Demarty</u>, Erik Reinhard, Franck Aumont, Laurent Blondé firstname.lastname@interdigital.com

réseaux

In particular:

In particular:

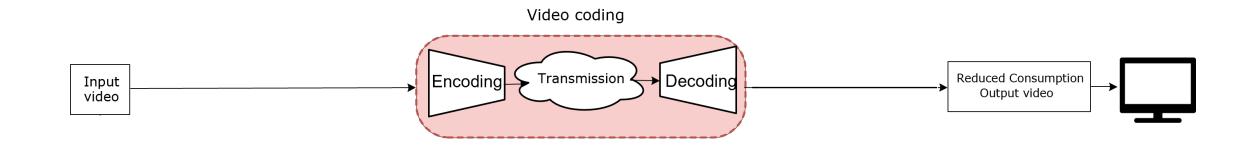
 Information & Communication Technology accounts for 1.3% of global carbon emission (690MtCO2e in 2020)

In particular:

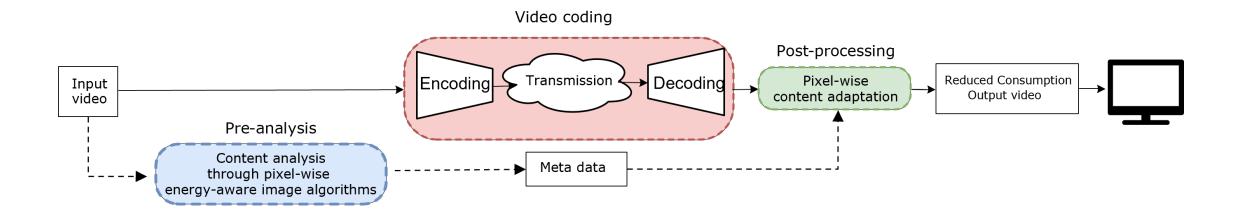
- Information & Communication Technology accounts for 1.3% of global carbon emission (690MtCO2e in 2020)
- Televisions represent **50% of the energy use** in the video chain

In particular:

- Information & Communication Technology accounts for 1.3% of global carbon emission (690MtCO2e in 2020)
- Televisions represent **50% of the energy use** in the video chain
- More than 2 billion televisions worldwide


In particular:

- Information & Communication Technology accounts for 1.3% of global carbon emission (690MtCO2e in 2020)
- Televisions represent **50% of the energy use** in the video chain
- More than **2 billion televisions worldwide**


Existing Green Metadata are **dedicated to backlit displays** via a **global scaling** of the brightness.

OLED displays enable **pixel-wise** energy reduction techniques.

Our Proposal

Our Proposal

A global framework for pixel-wise energy reduction at display side

> To account for more modern, emissive, pixel-wise displays

For two different use cases:

- energy is reduced as much as possible under the constraint that visual quality is maintained (broadcast, artistic intent)
- highest quality is searched under the constraint of a fixed reduction of energy use (streaming)

Standards

In JVET 29th meeting, contribution <u>AHG9: Attenuation Map Information SEI for reducing energy consumption of displays</u> it was proposed to:

- Carry the Attenuation Maps as auxiliary pictures
- Add a new SEI message to transmit metadata related to the use of the Attenuation Maps

attenuation_map_info (payloadSize) {	Descriptor		
ami_cancel_flag	u(1)		
if (!ami_cancel_flag) {			
ami_display_model	u(4)		
ami_global_flag	u(1)		
ami_map_approximation_model	u(4)		
ami_map_number	u(4)		
for (i=0; i <ami_map_number;)="" i++="" td="" {<=""><td></td></ami_map_number;>			
ami_layer_id[i]	u(8)		
ami_ols_number[i]	u(4)		
for (j=0;j <ami_ols_number[)=""];="" i="" j++="" td="" {<=""><td></td></ami_ols_number[>			
ami_ols_id[i][j]	u(8)		
}			
ami_energy_reduction_rate[i]	u(8)		
if (!ami_global_flag or (i = = 0)) {			
ami_attenuation_use_idc[i]	u(4)		
ami_attenuation_comp_idc[i]	u(4)		
ami_preprocessing_flag[i]	u(1)		
if(ami_preprocessing_flag[i]) {			
<pre>ami_preprocessing_type_idc[i]</pre>	u(4)		
}			
ami_preprocessing_scale_idc[i]	u(8)		
ami_backlight_scaling_idc[i]	u(4)		
}			
}			
}			
}			

ami_display_model specifies the targeted display ami_map_number specifies the number of transmitted Attenuation Map ami_approximation_model specifies the model used to extrapolate/interpolate a set of received Attenuation Map sample values

ami_attenuation_use_idc specifies how to use the Attenuation Map ami_attenuation_comp_idc specifies the mapping between Attenuation Maps and color components

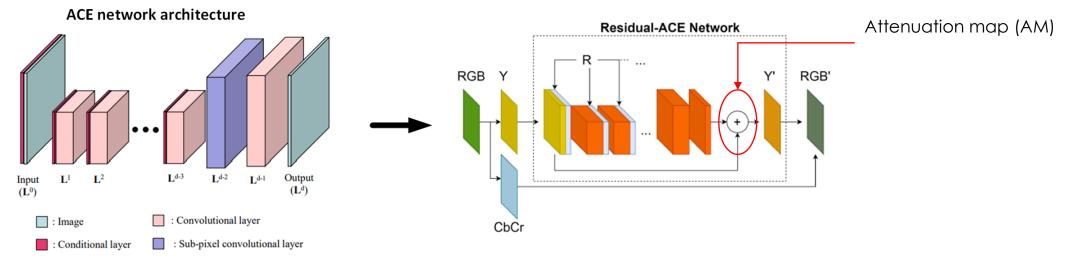
ami_preprocessing_flag specifies whether some pre-upsampling is to be used on the Attenuation Map sample values

ami_preprocessing_type_idc specifies the interpolation used to resample the Attenuation Map samples values

ami_preprocessing_scale_idc specifies the scaling applied to the Attenuation Map sample values

ami_backlight_scaling_idc specifies the process to compute the scaling factor of the backlight of transmissive pixel displays, derived from the Attenuation Map sample values

ami_energy_reduction_rate indicates the expected energy saving rate when the video is displayed after applying the Attenuation Map sample values


Standards

Since then, two new contributions:

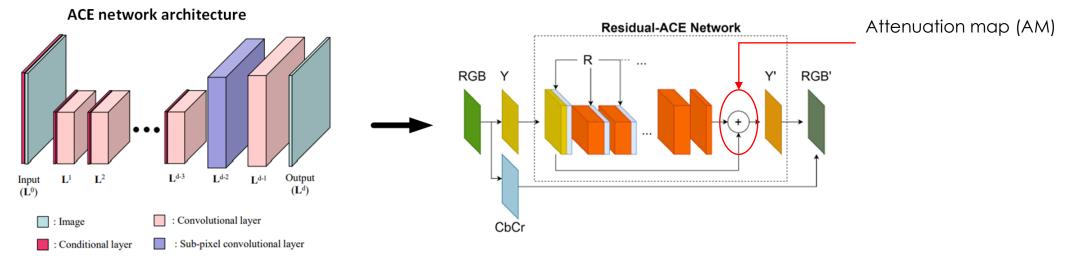
- Informative document at JVET 30th meeting:
 - <u>m62762 AHG9: Attenuation Map Information SEI for reducing energy consumption of displays</u>
 - TV settings and screens **do not influence** pixel-wise methods and **are not influenced** by them
 - Comparison of two pixel-wise methods with current implementation in Green Metadata and a global linear scaling of the luminance
 - Evaluation of the **transmission cost** of the Attenuation Maps

- **Proposal document** in last GreenMPEG meeting:
 - <u>m63305: Proposed new amendment of 23001-11 for signaling attenuation map metadata for</u> <u>display energy saving</u>
 - Addition with a very similar syntax in existing SEI
 - Accepted to be defined in a new amendment of the Green MPEG specification 23001-11

Implementation: R-ACE method [1]

[1] Kuntoro Adi Nugroho and Shanq-Jang Ruan. 2022. R-ACE Network for OLED Image Power Saving. In 2022 IEEE 4th Global Conference on Life Sciences and Technologies (LifeTech). IEEE, 284–285.

[2] Yong-Goo Shin, Seung Park, Yoon-Jae Yeo, Min-Jae Yoo, and Sung-Jea Ko. 2019. Unsupervised deep contrast enhancement with power constraint for OLED displays. IEEE Transactions on Image Processing 29 (2019), 2834–2844.


[3] D. Martin, C. Fowlkes, D. Tal, and J. Malik. 2001. A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. ICCV 2001, Vol. 2. 416–423.

1> interdigital

©2022 InterDigital, Inc. All Rights Reserved.

11

Implementation: R-ACE method [1]

On BSD300 dataset [3]. No annotation needed, based on a display energy model $P_Y = \sum_{i=1}^N Y_i^{\gamma}$ with $\gamma = 2.2$

Four different losses:

Quality: $L_{MAE} = \frac{1}{N} \sum_{i=1}^{N} |Y_i - \hat{Y}_i|$ Power reduction: $L_{pow} = ||P_{\hat{Y}} - (1 - R)P_Y||^2$ with $R \in [0,1]$ the target reduction rateQuality: $L_{SSIM} = 1 - SSIM(Y, \hat{Y})$ Smoothness: $L_{TV} = \frac{1}{N} \sum_{i=1}^{N} ((\nabla_v AM_i)^2 + (\nabla_h AM_i)^2)$

Training in two passes:

- Quality-driven: $L_{MAE} + L_{SSIM}$
- Power and smoothness-driven: $\alpha L_{MAE} + L_{SSIM} + L_{TV} + \beta L_{pow}$ with $\{\alpha, \beta\} = \{0.5, 2000\}$

[1] Kuntoro Adi Nugroho and Shanq-Jang Ruan. 2022. R-ACE Network for OLED Image Power Saving. In 2022 IEEE 4th Global Conference on Life Sciences and Technologies (LifeTech). IEEE, 284–285.
[2] Yong-Goo Shin, Seung Park, Yoon-Jae Yeo, Min-Jae Yoo, and Sung-Jea Ko. 2019. Unsupervised deep contrast enhancement with power constraint for OLED displays. IEEE Transactions on Image Processing 29 (2019), 2834–2844.
[3] D. Martin, C. Fowlkes, D. Tal, and J. Malik. 2001. A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. ICCV 2001, Vol. 2. 416–423.

i> interdigital

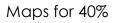
©2022 InterDigital, Inc. All Rights Reserved.

Objective results (still images)

Power display model needs to be further investigated (RGB vs RGBW displays)

Target of energy consumption reduction (%)

Image results on BSD dataset



Original

10%

20%

40%

Results on video sequences [RACE, linear scaling]

			VMAF			PSNR	
Sequences	Features	R=10%	R=20%	R=40%	R=10%	R=20%	R=40%
BBC_ThemePark_Part1	1080p50, 420, #600	[94.1; 90.7]	[94.1; 78.1]	[62.1; 51.8]	[37.03; 35.99]	[29.24; 30.23]	[24.54; 23.87]
BBC_ThemePark_Part2	1080p50, 420, #369	[99.54; 99.12]	[99.72; 94.12]	[74.19; 69.49]	[30.60; 30.58]	[25.62; 24.57]	[18.06; 18.08]
BBC_ThemePark_Part3	1080p50, 420, #489	[96.96; 93.65]	[95.64; 81.07]	[64.29; 54.27]	[37.57; 36.43]	[29.72; 30.68]	[25.56;24.32]
EBU_Aloha	1080p50, 420, #500	[99.97; 99.65]	[99.97; 87.68]	[72.59; 60.89]	[34.16; 34.00]	[27.95; 28.12]	[21.75; 21.68]
EBU_dance	1080p50, 420, #502	[98.84; 97.77]	[98.13; 86.06]	[61.26; 58.61]	[32.20;32.32]	[26.87;26.36]	[19.67;19.89]
NTT_BQTerrace	1080p60, 420, #601	[96.9; 93.5]	[98.51; 81.11]	[68.4; 54.3]	[31.04; 31.07]	[25.97; 25.06]	[18.51; 18.57]
Average		[97.6; 91.78]	[97.56; 84.68]	[67.13; 58.22]	[33.76; 33.39]	[27.56; 27.50]	[21.33; 21.06]

Using full reference metric VMAF [1] between original videos and modified ones. On some JVET test sequences.

Comparison with a linear scaling of the luminance.

- ✓ Objective quality is decreasing with higher energy reductions.
- ✓ RACE achieves better quality than linear scaling.
- ✓ Difference between both methods increases with energy reduction.

[1] Reza Rassool. 2017. VMAF reproducibility: Validating a perceptual practical video quality metric. In 2017 IEEE international symposium on broadband multimedia systems and broadcasting (BMSB). IEEE, 1–2.

Conclusion

- Proposal of a global framework for pixel-wise energy reduction at display side
- First implementation showed benefit compared to other global methods
- Standardisation process on going
 - Request for Amendment 2 of ISO/IEC 23001-11 MPEG systems technologies Part 11: Energy-efficient media consumption (green metadata)

Further work:

- Investigate more accurate display model
- Continue the standardization process

CD (Committee Draft)	2023-08-31
DIS (Draft International Standard)	2023-11-30
FDIS (Final Draft International Standard)	2024-01-31
IS (International Standard)	2024-05-31

