

Transcoding Quality Prediction for Adaptive Video Streaming

Vignesh V Menon¹, Reza Farahani¹, Prajit T Rajendran², Mohammad Ghanbari³, Hermann Hellwagner¹, Christian Timmerer¹

¹Christian Doppler Laboratory ATHENA, Alpen-Adria-Universität, Klagenfurt, Austria

²CEA, List, F-91120 Palaiseau, Université Paris-Saclay, France

³School of Computer Science and Electronic Engineering, University of Essex, UK

Outline

- Introduction
- M-stage transcoding model
- 3 TQPM Architecture
- 4 Evaluation
- Conclusions

Introduction HTTP Adaptive Streaming (HAS)¹

Source: https://bitmovin.com/adaptive-streaming/

Why Adaptive Streaming?

- Adapt for a wide range of devices.
- Adapt for a broad set of Internet speeds.

What HAS does?

- Each source video is split into segments.
- Encoded at multiple bitrates, resolutions, and codecs.
- Delivered to the client based on the device capability, network speed etc.

¹A. Bentaleb et al. "A Survey on Bitrate Adaptation Schemes for Streaming Media Over HTTP". In: *IEEE Communications Surveys Tutorials* 21.1 (2019), pp. 562–585.

Motivation

Video transcoding has been considered a prevalent solution for reconstructing video sequences at in-network servers (deployed at cloud or edge) in latency-sensitive video streaming applications.

Figure: An example scenario of VQA in adaptive streaming applications. Clients A and B receive the highest bitrate representation of the bitrate ladder, encoded at the origin server (single-stage transcoding). In contrast, Clients C, D, and E receive lower bitrate representations transcoded at the edge server (two-stage transcoding).

Motivation

Figure: Workflow of state-of-the-art VQA methods.

VQA is cumbersome in most video streaming applications where:

- The original input video segment is not available as the reference at the destination
- The final reconstructed video segment is not available at the source
- Slow quality-based decision-making is not acceptable for online latency-sensitive services.

M-stage transcoding model

Figure: M-stage transcoding model considered in this paper. Here, e_i and d_i represent the encoding and decoding in i^{th} stage of transcoding, while \tilde{b}_i denotes the target bitrate of e_i where $i \in [1, M]$.

- The generalized M-stage transcoding model for HAS consists of a series of M encoders and M decoders in a chain.
- M=1 transcoding corresponds to the single-stage transcoding while M=2 transcoding corresponds to the two-stage transcoding.

M-stage transcoding model

$$\tau_T = \sum_{i=1}^{M} (\tau_{e_i} + \tau_{d_i}) + 2 \cdot \tau_f \tag{1}$$

VQA at source by predicting the video quality using the input video segment characteristics and the transcoding system characteristics solves the discussed problems.

TQPM Architecture

Figure: TQPM architecture

The TQPM architecture comprises three steps:

- input video segment characterization
- transcoding model Characterization
- video quality prediction

Input video segment characterization

Compute texture energy per block

A DCT-based energy function is used to determine the block-wise feature of each frame defined as:

$$H_k = \sum_{i=0}^{w-1} \sum_{j=0}^{w-1} e^{\left|\left(\frac{ij}{wh}\right)^2 - 1\right|} |DCT(i,j)|$$
 (2)

where wxw is the size of the block, and DCT(i,j) is the $(i,j)^{th}$ DCT component when i+j>0, and 0 otherwise.

The energy values of blocks in a frame are averaged to determine the energy per frame.^{2,3}

$$E_s = \sum_{k=0}^{K-1} \frac{H_{s,k}}{K \cdot w^2}$$
 (3)

²Michael King, Zinovi Tauber, and Ze-Nian Li. "A New Energy Function for Segmentation and Compression". In: 2007 IEEE International Conference on Multimedia and Expo. 2007, pp. 1647–1650. DOI: 10.1109/ICME.2007.4284983.

³Vignesh V Menon et al. "Efficient Content-Adaptive Feature-Based Shot Detection for HTTP Adaptive Streaming". In: 2021 IEEE International Conference on Image Processing (ICIP). 2021, pp. 2174–2178. DOI: 10.1109/ICIP42928.2021.9506092.

Input video segment characterization

 h_s : SAD of the block level energy values of frame s to that of the previous frame s-1.

$$h_s = \sum_{k=0}^{K-1} \frac{|H_{s,k}, H_{s-1,k}|}{K \cdot w^2} \tag{4}$$

where K denotes the number of blocks in frame s.

The luminescence of non-overlapping blocks k of s^{th} frame is defined as:

$$L_{s,k} = \sqrt{DCT(0,0)} \tag{5}$$

The block-wise luminescence is averaged per frame denoted as L_s as shown below.⁴

$$L_s = \sum_{k=0}^{K-1} \frac{L_{s,k}}{K \cdot w^2} \tag{6}$$

⁴Vignesh V Menon et al. "VCA: Video Complexity Analyzer". In: Proceedings of the 13th ACM Multimedia Systems Conference. MMSys '22. Athlone, Ireland: Association for Computing Machinery, 2022, 259-264. ISBN: 9781450392839. DOI: 10.1145/3524273.3532896. URL: https://doi.org/10.1145/3524273.3532896.

Input video segment characterization

The video segment is divided into T chunks with a fixed number of frames (i.e., f_c) in each chunk. The averages of the E, h, and L features of each chunk are computed to obtain the reduced reference representation of the input video segment, expressed as:

$$X = \{x_1, x_2, ..., x_T\} \tag{7}$$

where, x_i is the feature set of every i^{th} chunk, represented as:

$$x_i = [E_i, h_i, L_i] \quad \forall i \in [1, T]$$
(8)

Phase 2: Transcoding model Characterization

- The settings of the encoders in the M-stage transcoding process, except the target bitrateresolution pair, are assumed identical.⁵
- The resolutions corresponding to the target bitrates in the bitrate ladder are also assumed to be fixed.

The transcoding model can be characterized as follows:

$$\tilde{B} = [\tilde{b}_1, \tilde{b}_2, .., \tilde{b}_M] \tag{9}$$

where \tilde{b}_i represents the target bitrate of the e_i encoder.

⁵Vignesh V Menon et al. "EMES: Efficient Multi-Encoding Schemes for HEVC-Based Adaptive Bitrate Streaming". In: ACM Trans. Multimedia Comput. Commun. Appl. 19.3s (2023). ISSN: 1551-6857. DOI: 10.1145/3575659. URL: https://doi.org/10.1145/3575669.

Phase 3: Video quality prediction

 \tilde{B} is appended to x_i , which is determined during the input video segment characterization phase, to obtain:

$$\tilde{\mathbf{x}}_i = [\mathbf{x}_i | \tilde{B}]^T \quad \forall \tilde{\mathbf{x}}_i \in \tilde{X}, \quad i \in [1, T]$$

$$\tag{10}$$

The predicted quality $\hat{v}_{\tilde{b}_M|..|\tilde{b}_1}$ can be presented as:

$$\hat{\mathbf{v}}_{\tilde{b}_{M}|..|\tilde{b}_{1}} = f(\tilde{X}) \tag{11}$$

The feature sequences in the series \tilde{X} are input to the LSTM model, which predicts visual quality \hat{v} for the corresponding input video segment and chain of encoders in the transcoding process.

Experimental Setup

Dataset : JVET,⁶ MCML,⁷ SJTU,⁸ Berlin,⁹ UVG,¹⁰ BVI¹¹

Framerate: 30fps

Encoder : x265 v3.5

Preset : ultrafast

Table: Representations considered in this paper.

Representation ID	01	02	03	04	05	06	07	08	09	10	11	12
r (width in pixels)	360	432	540	540	540	720	720	1080	1080	1440	2160	2160
b (in Mbps)	0.145	0.300	0.600	0.900	1.600	2.400	3.400	4.500	5.800	8.100	11.600	16.800

E, h, L features are extracted using VCAv2.0.

⁶ Jill Boyce et al. JVET-J1010: JVET common test conditions and software reference configurations. July 2018.

⁷ Manri Cheon and Jong-Seok Lee. "Subjective and Objective Quality Assessment of Compressed 4K UHD Videos for Immersive Experience". In: IEEE Transactions on Circuits and Systems for Video Technology 28.7 (2018), pp. 1467–1480. DOI: 10.1109/TCSVI.2017.2683504.

⁸Li Song et al. "The SJTU 4K Video Sequence Dataset". In: Fifth International Workshop on Quality of Multimedia Experience (QoMEX2013) (July 2013).

⁹B. Bross et al. "AHG4 Multiformat Berlin Test Sequences". In: JVET-Q0791. 2020.

¹⁰Alexandre Mercat, Marko Viitanen, and Jarno Vanne. "UVG Dataset: 50/120fps 4K Sequences for Video Codec Analysis and Development". In: *Proceedings of the 11th ACM Multimedia Systems Conference*. New York, NY, USA: Association for Computing Machinery, 2020, 297–302. ISBN: 9781450368452. URL: https://doi.org/10.1145/3339825.3394937.

¹¹Alex Mackin, Fan Zhang, and David R. Bull. "A study of subjective video quality at various frame rates". In: 2015 IEEE International Conference on Image Processing (ICIP). 2015, pp. 3407—3411. DOI: 10.1109/ICIP.2015.7351436.

Experimental Results

Figure: Scatterplots of the actual quality and predicted quality for M=1 ((a) PSNR, (b) SSIM, and (c) VMAF, respectively) and M=2 transcoding ((d) PSNR, (e) SSIM, and (f) VMAF, respectively).

Experimental Results

Table: Prediction accuracy of TQPM when M=1 and M=2, respectively, for \tilde{b}_1 representations considered in this paper encoded using x265 HEVC encoder.

				PSNR p	redictio	Π	SSIM prediction				VMAF prediction			
			M=1		M=2		M=1		M=2		M=1		M=2	
\tilde{b}_1		R^2	MAE	R^2	MAE	R^2	MAE	R^2	MAE	R^2	MAE	R^2	MAE	
b ₁	360p	0.145 Mbps	0.82	1.20 dB	-	-	0.89	1.08 dB	-	-	0.87	3.35	-	-
b_2	432p	0.300 Mbps	0.83	1.19 dB	0.84	1.37 dB	0.89	1.14 dB	0.87	1.34 dB	0.87	3.51	0.76	3.38
b_3	540p	0.600 Mbps	0.83	1.19 dB	0.85	1.28 dB	0.88	1.18 dB	0.85	1.21 dB	0.90	4.05	0.84	3.55
b_4	540p	0.900 Mbps	0.83	1.19 dB	0.83	1.22 dB	0.86	1.17 dB	0.86	1.11 dB	0.90	3.83	0.89	3.53
b_5	540p	1.600 Mbps	0.82	1.22 dB	0.82	1.15 dB	0.84	1.19 dB	0.85	1.38 dB	0.90	3.45	0.90	3.44
b_6	720p	2.400 Mbps	0.83	1.26 dB	0.83	1.28 dB	0.82	1.18 dB	0.83	1.57 dB	0.88	2.88	0.91	3.45
b_7	720p	3.400 Mbps	0.81	1.30 dB	0.85	1.23 dB	0.83	1.20 dB	0.82	1.35 dB	0.84	2.89	0.94	3.03
b_8	1080p	4.500 Mbps	0.84	1.28 dB	0.83	1.28 dB	0.88	1.23 dB	0.82	1.34 dB	0.87	2.28	0.95	3.03
b_9	1080p	5.800 Mbps	0.86	1.31 dB	0.87	1.42 dB	0.83	1.29 dB	0.86	1.30 dB	0.87	2.23	0.95	3.34
b_{10}	1440p	8.100 Mbps	0.84	1.39 dB	0.81	1.41 dB	0.87	1.29 dB	0.87	1.32 dB	0.85	2.73	0.96	2.96
b_{11}	2160p	11.600 Mbps	0.79	1.50 dB	0.82	1.31 dB	0.88	1.17 dB	0.84	1.32 dB	0.82	2.58	0.96	3.02
b ₁₂	2160p	16.800 Mbps	0.84	1.49 dB	0.79	1.26 dB	0.88	1.19 dB	0.86	1.35 dB	0.86	2.38	0.96	2.99
Average			0.83	1.31 dB	0.84	1.32 dB	0.85	1.19 dB	0.86	1.33 dB	0.87	3.01	0.91	3.25

The average processing time of TQPM for a 4s segment is 0.328s.

Conclusions

- This paper proposed TQPM, an online transcoding quality prediction model for video streaming applications.
- The proposed LSTM-based model uses DCT-energy-based features as reduced reference to characterize the input video segment, which is used to predict the visual quality of an M-stage transcoding process.
- The performance of TQPM is validated by the Apple HLS bitrate ladder encoding and transcoding using the x265 open-source HEVC encoder.
- On average, for single-stage transcoding, TQPM predicts PSNR, SSIM, and VMAF with an MAE of 1.31 dB, 1.19 dB, and 3.01, respectively.
- Furthermore, PSNR, SSIM, and VMAF are predicted for two-stage transcoding with an average MAE of 1.32 dB, 1.33 dB, and 3.25, respectively.

Future Directions

- In the future, transcoding between bitrate ladder representations of various codecs shall be investigated.
- Another future direction is defining a decision-making component based on the proposed model in an end-to-end live streaming system.

Thank you for your attention!

Vignesh V Menon (vignesh.menon@aau.at)

VCA