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Introduction

Introduction
HTTP Adaptive Streaming (HAS)!

Why Adaptive Streaming?

Fast Internet @ Adapt for a wide range of devices.
Screen size: 1920 x 1080 px

QR rteme:. @ Adapt for a broad set of Internet speeds.
Video plays at high quality
1920 x 1080 px with no buffering
What HAS does?
Screen size: 1920 x 1080 px @ Each source video is split into segments.
With slower internet.
Video plays at medium quality @ Encoded at multiple bitrates, resolutions,
1280x 720 px with no buffering
and codecs.
Slow Internet
Source: https://bitmovin.com/adaptive-streaming/ @ Delivered to the client based on the device
capability, network speed etc.

1A Bentaleb et al. “A Survey on Bitrate Adaptation Schemes for Streaming Media Over HTTP” . In: /EEE Communications Surveys Tutorials 21.1 (2019},
pp. 562-585.
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Introduction

Motivation

Video transcoding has been considered a prevalent solution for reconstructing video sequences at
in-network servers (deployed at cloud or edge) in latency-sensitive video streaming applications.
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Figure: An example scenario of VQA in adaptive streaming applications. Clients A and B receive the
highest bitrate representation of the bitrate ladder, encoded at the origin server (single-stage transcoding).
In contrast, Clients C, D, and E receive lower bitrate representations transcoded at the edge server (two-
stage transcoding).
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Motivation
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Figure: Workflow of state-of-the-art VQA methods.

VQA is cumbersome in most video streaming applications where:

@ [ he original input video segment is not available as the reference at the destination

@ T[he tinal reconstructed video segment is not available at the source

@ Slow quality-based decision-making is not acceptable for online latency-sensitive services.
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Figure: M-stage transcoding model considered in this paper. Here, & and d; represent the encoding and
decoding in i* stage of transcoding, while b; denotes the target bitrate of e; where i € [1, M].
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@ [ he generalized M-stage transcoding model for HAS consists of a series of M encoders and
M decoders in a chain.

@ M=1 transcoding corresponds to the single-stage transcoding while M=2 transcoding corre-
sponds to the two-stage transcoding.
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M-stage transcoding model
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Tr = (re +74)+2-7 (1)
i=1

VQA at source by predicting the video quality using the input video segment characteristics and
the transcoding system characteristics solves the discussed problems.
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TQPM Architecture

TQPM Architecture
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Figure: TQPM architecture
The TQPM architecture comprises three steps:
@ input video segment characterization

e transcoding model Characterization

@ video quality prediction




TOPM Architecture Phase 1: Input video segment characterization

Input video segment characterization

Compute texture energy per block

A DCT-based energy function is used to determine the block-wise feature of each frame
defined as:

E
'—L

w—1 -
" &1 peT (i, ) (2)
i=0

T
=

where wxw is the size of the block, and DCT(i, j) is the (i, /) DCT component when
i+ j > 0, and 0 otherwise.

The energy values of blocks in a frame are averaged to determine the energy per frame.?>>
K—1
L
E. = 2t 3
K- w? %)
k=0

2hichael King, Zinovi Tauber, and Ze-Mian Li. "A New Energy Function for Segmentation and Compression” . In: 2007 [EEE international Conference on
Multimedia and Expo. 2007, pp. 1647—1650, Do1 10,1109/ I0ME, 2007 . 4284953

3‘\fignesh Yo Menon et al. "Efficient Content-Adaptive Feature-Based Shot Detection for HT TP Adaptive Streaming”. |In: 2021 [EEE [nternational Conference
on Image Frocessing ({CIP). 2021, pp. 2174—2178. Dol 10.1109/ICIP42928 2021 . 9806092,




TOPM Architecture FPhase 1: Input video se

Input video segment characterization

hs: SAD of the block level energy values of frame s to that of the previous frame s — 1.

=
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‘ Hs,k: Hs—l,k ‘
hS — F<-+ VVQ (4J
0
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where K denotes the number of blocks in frame s.
The luminescence of non-overlapping blocks k of st frame is defined as:

Ls,k — \/DCT(O? 0) (5)

The block-wise luminescence is averaged per frame denoted as L. as shown below.*

K—-1 { .

Lo=S" ok

° K- w? (0)
k=0

d‘u’ignesh YWohlenon et al. "WCA: Video Complexity Analyzer" . In: Proceedings of the 13th ACM Multimedia Svstems Conference. MMSys '220 Athlone,

lreland: Association for Computing Machinery, 2022, 250264 13BN 9751450300830 por 10.1414E5/3524273. 3532896, URL:
https://doi.org/10. 1146/3624273 3632896




TQFM Architecture Fhase 1: Input video segment characterization

Input video segment characterization

The video segment is divided into T chunks with a fixed number of frames (ie., f.) in each
chunk. The averages of the E, h, and L features of each chunk are computed to obtain the
reduced reference representation of the input video segment, expressed as:

X = {Xl?Xg, ..,XT} (7)

where, x; is the feature set of every i chunk, represented as :

X; = [E;, h;.{. LI] Vi€ [1, T] (8)‘
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Phase 2: Transcoding model Characterization

M-Stage Transcoding System Model
Stage 1 Stage 2 Stage M
By by by

Input Video Segment

Reconstructed
Video Segment

FFrsi . = s Y rrri

@ [ he settings of the encoders in the M-stage transcoding process, except the target bitrate-
resolution pair, are assumed identical.”

@ [ he resolutions corresponding to the target bitrates in the bitrate ladder are also assumed
to be fixed.

The transcoding model can be characterized as follows:

B = [by, by, .., bp] (9)

where b; represents the target bitrate of the e; encoder.

5‘Jignesh WoMenon et al "EMES: Efficient Multi-Encoding Schemes for HEVC-Based Adaptive Bitrate Streaming” . Ino ACM Trans Multimedia Comput.
Comimun. Appl 12 3s (2023]. 188N 1551-6857. DOIr 10.1145/36VEEED. URL: https://dol.org/10.1146/367E66D,
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TQFM Architecture Fhase 3: Video quality prediction

Phase 3: Video quality prediction

B is appended to x;, which is determined during the input video segment characterization phase,
to obtain:

% =[x|B]" v%eX, ic[l,T] (10)

The predicted quality \.'?'EM|”|51 can be presented as:

0,15 = F(X) (11)

The feature sequences in the series X are input to the LSTM model, which predicts visual quality
¥ for the corresponding input video segment and chain of encoders in the transcoding process.




Evaluation

Experimental Setup

Dataset  : JVET.® MCML,” SJTU .2 Berlin,® UVG 10 BV
Framerate : 30fps
Encoder : x265v3.5

Preset - ultrafast
Table: Representations considered in this paper.
Representation ID | 01 02 03 04 | 05 06 07 08 09 10 11 12
r (width in pixels) | 360 | 432 | 540 | 540 | 540 | 720 | 720 | 1080 | 1080 | 1440 | 2160 | 2160
b (in Mbps) 0.145 | 0.300 | 0.600 | 0.900 | 1.600 | 2.400 | 3.400 | 4500 | 5.800 | 8.100 | 11.600 | 16.800

E. h, L features are extracted using VCAv2.0.

& Jill Bovee et al, JVET-JI010: SVET common fest conditions and soffware refersnce configurations. July 2015,

"hManri Cheon and Jong-Seok Lee. "Subjective and Ohjective Quality Assessment of Compressed 4K UHD Wideos for Immersive Experience”. In: JEEE
Transactions on Circuits and Systems for Video Technology 2687 (2018), pp. 1467—1480. Dol 10.1108/TCEVT. 2017. 2683504,

B Song et al. "The SJTU 4K Video Sequence Dataset". In: Fifth International Workshop on Quality of Multimedia Experience (QoMEX2013) (July 2013].
9B Bross et al, "AHGA Multiformat Berlin Test Sequences” . [n: JVET-QO797 2020

105 lexandre Mercat, Marko Wiitanen, and Jarno Wanne, "UWG Dataset: 50/120fps 4K Sequences for Wideo Codec Analysis and Development” . In. Procesdings
of the 11th ACM Multimedia Systems Conference. Mew York, NY, USA: Association for Computing Machinery, 2020, 207-302. 13BN 9781450368452 URL:
https: //dol. org/10. 1145/3330805 3304037

A lex Mackin, Fan Zhang, and David B Bull. "A study of subjective video quality at various frame rates" . In: 20715 (EEE (nternational Conference on Imags
Processing (J’CJ'P). 2015, pp. 3407-3411. por 10.1109/ICIP. 2015, 7361436
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Experimental Results

Experimental Results
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Figure: Scatterplots of the actual quality and predicted quality for M=1 ((a) PSNR, (b) SSIM, and (c)
VMATF, respectively) and M=2 transcoding ((d) PSNR, (e) SSIM, and (f) VMAF, respectively).
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Evaluation Experimental Results

Experimental Results

Table: Prediction accuracy of TQPM when M=1 and M=2, respectively, for b; representations considered in
this paper encoded using x265 HEVC encoder.

FSME prediction S5IM pradiction WAF pradiction
IM=1 M=2 M=1 =2 M=1 M=2
Eﬁi R? W AE R? M AE R M AE R? W AE R? | MAE | R? | MAE

o3} 3e0p | 0145 Mbps | 082 | 120dE - - 0859 | 1.05dE - - 087 | 335 - -
po | 432p | 0300 Mbps | 083 | 1190dEB | 084 | 1.37dB | 089 | 1.14d4B | 087 | 1.34dB | 087 | 351 | 076 | 338
3 E40p | 0600 Mbps | 083 | 119dE | 085 | 128dB | 083 | 1.168dB | 085 | 121dB | 000 | 405 | 084 | 355
By 540p | 0.900 Mbps | 083 | 1.19dE | 083 | 122dB | 086 | 1.17dB | 0380 | 111dE | 0G0 | 383 | 0680 | 353
b 540p | 1.600 Mbps | 082 | 122dE | 082 | 1.15dB | 084 | 1.19dB | 0385 | 138dE | 0G0 | 345 | 000 | 344
b 720p | 2400 Mbps | 083 | 126dE | 083 | 128dB | 082 | 1.18dB | 083 | 157dBE | 088 | 288 | 001 | 345
by 720p | 3400 Mbps | 081 | 1.30dE | 085 | 123dB | 083 | 120dB | 082 | 135dE | 084 | 2389 | 084 | 303
g | 1080p | 4500 Mbps | 084 | 128dB | 083 | 128dB | 088 | 1.23dB | 082 | 1.34dB | 087 | 2286 | 0.95 | 303
g | 1080p | 5800 Mbps | 086 | 131dE | 087 | 142dEB | 083 | 1209dB | 086 | 1.30dE | 087 | 223 | 005 | 334
g | 1440p | 8100 Mbps | 084 | 130dE | 081 | 141 4B | 087 | 1204B | 087 | 1.32dE | 085 | 273 | 006 | 296
B | 2160p | 11.600 Mbps | 079 | 150dE | 082 | 1.31dEB | 088 | 1.17dB | 084 | 1.32dE | 0.82 | 258 | 006 | 302
o | 2160p | 16800 Mbps | 084 | 140dE | 070 | 1.264dEB | 088 | 1.104B | 086 | 1.35dE | 0.8 | 2.38 | 006 | 2,00

Average 063 |131dB| 064 | 1.32dB [ 0.85 | 1.19dB | 0.66 | 1.33 dB | 0.87 | 3.01 | 0.91 | 3.25

The average processing time of TQPM for a 4s segment is 0.328s.

Lreaming



Conclusions

Conclusions

@ T his paper proposed TQPM, an online transcoding quality prediction model for video stream-
ing applications.
@ The proposed LSTM-based model uses DCT-energy-based features as reduced reference

to characterize the input video segment, which is used to predict the visual quality of an
M-stage transcoding process.

@ [he performance of TQPM is validated by the Apple HLS bitrate ladder encoding and
transcoding using the x265 open-source HEVC encoder.

@ On average, for single-stage transcoding, TQPM predicts PSNR, S5IM, and VMAF with an
MAE of 1.31 dB, 1.19 dB, and 3.01, respectively.

@ Furthermore, PSNR, SSIM, and VMAF are predicted for two-stage transcoding with an
average MAE of 1.32 dB, 1.33 dB, and 3.25, respectively.

o Quality Prediction for Adaptive Video Streaming



Conclusions

Future Directions

@ |n the future, transcoding between bitrate ladder representations of various codecs shall be
investigated.

@ Another future direction is defining a decision-making component hased on the proposed
model in an end-to-end live streaming system.

lity Prediction for Adaptive reaming



Thank you for your attention!

Vignesh V Menon (vignesh.menon®@aau.at)

Transcoding Quality Prediction for Adaptive Video Streaming
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