

Review and evaluation of VVC fast partitioning search methods using a common baseline

Benjamin Bross, Fraunhofer HHI Feb. 12th 2024, MHV

VVC Partitioning Complexity

Quadtree (QT) plus Multi-Type Tree (MTT)

Flexible block partitioning major part of the new

Versatile Video Coding Standard (H.266 / VVC)

- Picture divided into Coding Tree Units (CTU)
 - square, fixed size e.g. 128x128
- CTU partitioned using a Quadtree (QT)
 - same as in H.265 / HEVC
- QT leaf is root of the nested Multi-Type Tree (MTT) with

VVC Partitioning Complexity

QT and MTT depths A. Wieckowski, A. Henkel, B. Bross, H. Schwarz, and D. Marpe

MHV'24, February 11-14, 2024, Denver, CO, USA

А. W

1

7

Partitioning depth has major impact on

A

VVC Partitioning Complexity

Analysis by Wieckowski et al., TCE, 2023

Full search complexity (forward-only, recursive)

- Increases exponentially with max. MTT depth
- HEVC partitioning corresponds to MTT depth 0 and CTU size 64x64

Tested options:

- Close to full search in HEVC reference encoder (HM)
- Significantly lower for higher MTT depth in the VVC reference encoder (VTM)
- Partitioning search in VTM already quite optimized

Max. MTT depth is the most important control parameter for VVC partitioning complexity control

Proposal: Common baseline for fast partitioning algorithm

To improve comparability and general performance assesment

Proposal

Reduce max. MTT depth for different operation points

Problem

 Coarse spacing of working points (only reduction to 0, 1 and 2 allowed)

Solution

 Finer granular reduction, i.e. per temporal layer in hierarchical inter-picture referencing structures.

Max. MTT depth	TL0	TL1	TL2	TL3	TL4+
MTT 3 (VTM)	3	3	3	3	3
MTT 33332	3	3	3	3	2
MTT 33322	3	3	3	2	2
MTT 33222	3	3	2	2	2
MTT 32222	3	2	2	2	2
MTT 2	2	2	2	2	2
MTT 22221	2	2	2	2	1
MTT 22211	2	2	2	1	1
MTT 1	1	1	1	1	1

Proposal: Common baseline for fast partitioning algorithm

Gradual max. MTT depth reduction

Additional working points for fine granular complexity scaling

- VTM-14 results with JVET randomaccess configuration
- Encoder only working points:
- Only search is restricted, not the signaling
- Reduced efficiency due to obsolete "don't split" flags sent

General overview of the eight reviewed methods

A) Statistical analysis based (3/8)

- Based on
 - Decision history
 - Simple cost prediction
 - Pixel information

All 8 methods...

- ...decide per split (yes/no) and split-type (binary/ternary, hor/ver)
- ...apply to P/B inter-coding frames

Challenges in comparing the methods due to different...

- ...test sequences -> aligned in this work
- ...versions of VTM -> aligned in this work

B) ML – Trained classifiers (2/8)

- Based on
 - Cost prediction
 - Decision history
 - Pixel information

C) ML – Convolutional Neural Network (CNN) (3/8)

- Based on
 - Residual
 - Motion field
 - Colocated frames' partitioning
 - Pixel information

How to interpret sequences being omitted in tests

Common Test Conditions (CTC)

- All methods use the same JVET CTC random-access config
- But not all use the same set of sequences or VTM version

Why not use CTC sequences?

- A1 / B1 -> No real explanation given in the paper
- B2 / C1 -> Omitted sequences used in training

Sequences and VTM versions have been aligned for testing the proposed method!

JVET Sequences		Stat. Analysis			Train. Clas.		ML CNN		
Class	Name	A1	A2	A3	B1	B2	C1	C2	C3
UHD1	Tango2	Х	\checkmark	\checkmark	\checkmark	\checkmark	х	\checkmark	\checkmark
	FoodMarket4	x	\checkmark	\checkmark	\checkmark	\checkmark	x	\checkmark	\checkmark
	Campfire	Х	\checkmark						
UHD2	CatRobot1	Х	\checkmark	\checkmark	\checkmark	Х	Х	\checkmark	\checkmark
	DaylightRoad2	х	\checkmark	\checkmark	\checkmark	х	х	\checkmark	\checkmark
	ParkRunning3	Х	\checkmark						
HD	MarketPlace	\checkmark	\checkmark	\checkmark	Х	\checkmark	х	\checkmark	\checkmark
	RitualDance	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Cactus	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	BasketballDrive	\checkmark	\checkmark	\checkmark	\checkmark	х	x	\checkmark	\checkmark
	BQTerrace	\checkmark	\checkmark	\checkmark	\checkmark	х	x	\checkmark	\checkmark
С	BasketballDrill	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	BQMall	\checkmark	\checkmark	\checkmark	\checkmark	х	x	\checkmark	\checkmark
	PartyScene	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	RaceHorses	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
D	BasketballPass	\checkmark	\checkmark	\checkmark	\checkmark	Х	Х	\checkmark	\checkmark
	BQSquare	\checkmark	\checkmark	\checkmark	\checkmark	х	\checkmark	\checkmark	\checkmark
	BlowingBubbles	\checkmark	\checkmark	\checkmark	\checkmark	Х	\checkmark	\checkmark	\checkmark
	RaceHorses	\checkmark	\checkmark	\checkmark	\checkmark	Х	\checkmark	\checkmark	\checkmark
	VTM Version	10.2	14.0	14.0	7.0	8.0	5.0	10.2	10.2

Comparison with similar working points of proposed method (1/3)

A) Statistical analysis-based methods:

- A1 shows both higher runtime and more loss than proposed similar working point
- A2 shows better trade-off
- A3 with reduced max MTT depth shows similar runtime but smaller loss

Faster

Comparison with similar working points of proposed method (2/3)

B) ML trained classifier methods:

- B1 shows better trade-off
- B2 shows both higher runtime and more loss than proposed similar working points

Comparison with similar working points of proposed method (3/3)

C) ML CNN-based methods:

- C1 shows better trade-off
- C2 shows more loss than proposed similar working point
- C3 shows more loss than proposed similar working points

Conclusion

Only 4 out of 14 working points outperformed proposed common baseline

- Two of those four considered max. MTT depth
- One of those four uses a CNN

Lessons learned

- Fancy neural networks alone do not solve this problem
- Max. MTT depth is key for VVC partitioning complexity control
- Per-CTU max. MTT depth adaptation instead of per-split decisions seems more promising for VVC partitioning
- Further research should compare to the proposed baseline

Thank you for your attention