
Ultra-low Latency Video 
Delivery Over WebRTC 
Data Channels

Nelson Francisco

Olie Baumann

Julien Le Tanou

Richard Fliam

MediaKind

1

MHV24
February 11-14
Denver, CO, USA



2

Latency

WebRTC

Streaming (LL)

Streaming

Broadcast

Latency in Video Delivery
Video streaming industry has focused great 
interest in low-latency over the past few 
years:

• More variety and more heterogenous providers – 
race to be the first, preferred platform;

• Proliferation of social media brings almost instant 
updates to the viewers;

• Opportunities for monetization – spot betting;

• Increased variety of platforms where viewers 
consume video content.



3

HTTP streaming

• Delay on HTTP streaming is the result of the 

accumulated delay introduced by 

multiple elements in the delivery pipeline;

• Latency is closely linked to the segment 

delay;

• To lower the latency, segments can be 

split into chunks, written and made 

available more frequently – LL-HLS and LL-

DASH.

• Multiple renditions are made available at different 
resolutions and bitrates;

• For live streaming, the manifest is continually 
updated as new media segment are made 
available;

• The client chooses the bitrate that best suits its 
perceived network conditions.



4

Limitation on HTTP streaming

• Simply reducing the segment length 

impacts video quality and increases CDN 

and server load;

• If the network becomes congested and 

packets are not getting through in time, 

they may be retried;

• Because packet delivery over TCP is reliable 

and ordered, all future packets are 

blocked until the lost one is successful – 

head-of-line blocking;

• HTTP does not allow “cancelling” the 

remainder of a segment if the CDN 

becomes congested;

• Slow to change renditions when network 

conditions change;

• Large buffers are required at the client side 

to guarantee a smooth playback when the 

delivery is bursty.



5

QUIC

MOQ promises several advantages:

• Reduced connection establishment time;

• Transport Layer Security – encryption;

• Improved congestion control;

• Allows multiplexing of streams over a single 

connection to avoid HoL;

• Prioritization.

• Developed by Google and 
standardized by the IETF (RFC9000);

• Media over QUIC (MOQ) working 
group formed in 2022 and tasked by 
IETF to study large-scale media 
transmission over QUIC;

• Need a custom application layer to 
reap all the benefits QUIC can provide 
at the transport layer;

• Still limited compatibility and support.



6

WebRTC

• Developed by Google c. 2010;

• Open-source protocol/libraries;

• Since WebRTC does not contain third-
party software or plugins, it can pass 
through firewalls without losing quality or 
adding latency;

• Designed for bidirectional, real-time 
communication, WebRTC is the fastest 
protocol available with wide support;

• Primarily for Video Conferencing;

• Latencies in the 100s ms;

• UDP, not HTTP / TCP based;

• Supported by most browsers.



7

WebRTC

• Targets peer-to-peer applications such 

as video conferencing

• SPD offer contains the codecs Peer One 

wants to use and the address to contact 

Peer One directly

• Forwarded to Peer Two, who can refuse, 

put on hold or make counter-offer by 

making an SPD answer

• SPD answer forwarded to Peer One, and 

connection is established.

• As the network connection changes, the 

encoder adapts its bandwidth

• There are no multiple renditions to chose 

from.

Establishing connection between two peers:



8

WebRTC
But WebRTC not suited for live streaming:

• Encode per client doesn’t scale;

• Encoding tools in WebRTC are limited (low 

quality/bandwidth balance);

• No support for DRM.

WebRTC is not suited for one-to-many 
application scenarios:

However, by using WebRTC data channels, 

designed for arbitrary binary data:

• We can use a standard, broadcasting 

grade encoder;

• Control the video quality;

• Apply DRM;

• The pre-encoded and encrypted content 

can simply be replicated to all clients at 

the edge of the networkScale to millions 

of users. 



9

WebRTC - the WAVE solution

• The encoder produces all renditions;

• The packager segment the stream and 

serializes all the streams into a flatbuffer;

• At this stage, the content can be 

encrypted using standard DRM 

techniques;

• The regional Wave Edge receivers 

access the data in the flatbuffer via SRT;

• Each server then sends the data to 

multiple clients via WebRTC, deciding 

which of the received pre-encoded 

renditions to send to each client.

The WAVE solution can be split into three main 
sections:

• Encoding – use a standard encoder to 
generate all renditions;

• Distribution – serialize all renditions into a 
single buffer, and distribute to multiple WAVE 
Edge servers via SRT;

• Delivery – WAVE Edge servers deliver the 
different renditions to each client, using 
WebRTC data channels.



10

WAVE Edge

Kubernetes cluster containing multiple services:

• Wave controller (SDP negotiation and 
streamer scaling depending on the number 
of clients)

• SRT fanout

• WebRTC streamer

• The Wave controller manage the 

connections with the clients

• Feedback path from the client informs 

the streamer about network conditions

• The Streamer send to each client the best 

rendition for the bandwidth available



11

WAVE Edge

Kubernetes cluster containing multiple services:

• Wave controller (SDP negotiation and 
streamer scaling depending on the number 
of clients)

• SRT fanout

• WebRTC streamer

• The Wave controller manage the 

connections with the clients

• Feedback path from the client informs 

the streamer about network conditions

• The Streamer send to each client the best 

rendition for the bandwidth available

• Each Streamer handles many clients 

(limited by the node NIC throughput)

• It is very lightweight; in some use cases we 

are able to deploy the streamer on a 

home gateway



12

WAVE Edge

Kubernetes cluster containing multiple services:

• Wave controller (SDP negotiation and 
streamer scaling depending on the number 
of clients)

• SRT fanout

• WebRTC streamer

• The Wave controller manage the 

connections with the clients

• Feedback path from the client informs 

the streamer about network conditions

• The Streamer send to each client the best 

rendition for the bandwidth available

• Each Streamer handles many clients 

(limited by the node NIC throughput)

• It is very lightweight; in some use cases we 

are able to deploy the streamer on a 

home gateway

• More clients, more streamers - scaling is 

managed by the controller when the 

streamer node NIC is exceeded 

• For more streamers, we need fanout to 

avoid excessive egress costs / replicating 

data locally rather than across regions



13

Implications of using Web RTC

• WebRTC (SCTP/UDP) can be unreliable • Forward Error Correction and interleaving 
manage the majority of losses

• Latency is a new ABR algorithm 
parameter

• The profile must be chosen on the 
“server” side

• Transitions to lower profiles can be quicker

• WebRTC is all push, there is no buffer

• ABR algorithms need to be rethought

• We still need HTTP for live pause and time 
shift



14

WebRTC plus HTTP

• The client can store content 

coming from the WebRTC stream 

to fill the gap between the live 

edge and the first reasonable 

playback point in the HLS playlist, 

typically twenty to thirty seconds.

• This way, consumers are able to 

navigate the seek bar in the 

normal way and return to the ultra-

low latency feed at any time.

To handle replays, this ultra-low latency streaming 
solution is combined with a more traditional HTTP 
delivery mechanism:



15

Summary

• WebRTC can be reliably used for ultra-low 
latency streaming

• By using Data Channels it is possible to:

• Maintain control over picture quality

• Apply standard DRM schemes

• Scale to millions of clients




	Slide 1: Ultra-low Latency Video Delivery Over WebRTC Data Channels
	Slide 2: Latency
	Slide 3: HTTP streaming
	Slide 4: Limitation on HTTP streaming
	Slide 5: QUIC
	Slide 6: WebRTC
	Slide 7: WebRTC
	Slide 8: WebRTC
	Slide 9: WebRTC - the WAVE solution
	Slide 10: WAVE Edge
	Slide 11: WAVE Edge
	Slide 12: WAVE Edge
	Slide 13: Implications of using Web RTC
	Slide 14: WebRTC plus HTTP
	Slide 15: Summary
	Slide 16

