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Targeted Media Presentations

Use existing or live content
Personalized or targeted content

Different pre-, mid-, post-rolls (e.g., ads and
main content) per user

FAST channels (ad supported targeted
channels)

More chance that the user likes what it will
see and hear




State of the Art

to new personalized
presentation

Computationally Expensive

>Transcoding - Full transcode P Player logic,

>player based ad insertion
etc..x

Customized player behavior
backward compatibility

Offline transcoding
+

Just-in-time packaging




Reaching all devices with repurpose content

>MP4

> Microsoft Smooth
Streaming (HSS)

>HTTP Live Streaming
(HLS)

>DASH (including
early versions)

>Common denominator is using
a single media timeline as
required in MP4

@ Unified Streaming



Authoring of Targeted Media Presentations Framework (Sec.2.2)

—

=

g

ey |

Media o

playlists rm"_ =
4

Y
ONIHOHLNY LN3ILNOD

-:;—-{ JIT Packager }7

>

HAS Cache HAS
Static - Dynamic
Streaming Streaming
Presentation Presentation

Y
AY3AIT3A VIa3IW




CMAF Transcoding component (Sec. 3.1)

> Bitrate alignment

>Same segment |

duration
>Segment boundary |

alignment
>Interchangeable

segments
> Audio & timed text
is also transcoded

‘tfdt’=T

‘“tfdt’=T+duration(N)

CMAF Fragments are time aligned

‘tfdt’=T+duration(N) and have continuous duration
+ duration(N+1)

Source:https://cdn.cta.tech/cta/media/media/resources/standards/pdfs/cta-5001-c_final.pdf
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ISO/IEC 23000-19:2020, (24-27)



Content Authoring overview
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Media Representations (e.g., bitrate, codec, etc.)
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Media Delivery (Sec. 4)

>HTTP based media delivery
> Content delivery

> Cache keys — Different cache keys
for Each presentation

> Re-purpose content delivery
component is introduced based on a
smart edge cache using Varnish and
use case specific caching logic

@ Unified Streaming




Player Edge Proxy Cache JIT Packager SMIL Playlists Storage

GET Media Segment

Hash based approach (Sec. 4.3)
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Player Edge Proxy Cache JIT Packager SMIL Playlists Storage

GET Media Segment

Name Scheme
approach (Sec. 4.1)

Get segment
timing information
from URL
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Segment Naming Scheme (4.1)

Augmented Backus-Naur (ABNF) form

segment-name *(AssetId sep start
sep duration [sep assetTimeOff])
sep contentType sep CodecType
sep bitRate sep Time fileType

DIGIT %x30-39; 0-9

ALPHA %x41-5A / %x61-7A; A-Z / a-z
sep -/ _

assetID = ALPHA *(ALPHA / DIGIT)

start = *DIGIT

assetOff *DIGIT

duration *DIGIT

contentType "audio" / "video" / "text" / "meta"
codecType 4(DIGIT / ALPHA)

bitRate *DIGIT

time *DIGIT

filetype .m4s / .mp4 / .dash / .cmfs

ABNF: https://www.rfc-editor.org/rfc/rfc5234
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Name Scheme delivery implementation using Varnish

HAS Streaming Presentation response/

> Multi-thread based processing
> HTTP Routing and Header manipulation
> Independent client request/response from

backend fetch.
> Implement using Varnish Configuration
Language

Cache key-value pair store table
<CACHE_KEY> || <CACHE_VALUE>
<AssetID>- <playlistName>/dash/
<$RepresentationID$>- || <playlistName>-
<$Time$> <$RepresentationID$>-

<$Time$>

.@' Unified Streaming
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Example test cases

> Test of playlists with
different pre-roll and mid
rolls

> Cache not loaded

> Cache loaded with 1 other
stream (playlist A)




Avg. response time

Cache not loaded (Sec 5.3) VS Pre-loaded cache (Sec. 5.4)

Avg. response time [ms]
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Pre-loaded Cache (5.4)

Cache size [Bytes] Backend traffic [Mbps]

o Conf. CDN = Conf. Hash = Conf. Name Scheme o Conf. CDN = Conf. Hash = Conf. Name Scheme
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Summary

Re-purposed content streaming to a broad range of devices.
Authoring component using offline CMAF transcoding with segment and bit-rate alignment.

Authoring component using just-in-time packaging to create the re-purposed presentations
on-the-fly.

HTTP Delivery component with two optimized caching approaches, using a naming scheme
or a hashing scheme

PoC using Varnish Enterprise and Unified Origin was implemented and evaluated.
Low response time overhead, reduced backend traffic and reduced cache sizes.

Next steps we are looking to deploy this at a larger scale and in production.



Questions?




Thank youl!

For any questions, feel free to contact me or
Roberto at:

rufael@unified-streaming.com
OR

roberto@unified-streaming.com

https://doi.org/10.1145/3588444.3591005
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