Framework for Authoring and Delivery of
Targeted Media Presentations using Smart
Edge Proxy Cache

MHV2023 - Day 2

Rufael Mekuria, Roberto Ramos-Chavez, Espen Braastad, Arjen Wagenaar

Unified Streaming, Amsterdam, The Netherlands

May. 8th, 2023

https://dl.acm.org/doi/10.1145/3458305.3463380

N
@ Unified Streaming @ VARNISH

SOFTWARE

https://dl.acm.org/doi/10.1145/3458305.3463380

Targeted Media Presentations

Use existing or live content
Personalized or targeted content

Different pre-, mid-, post-rolls (e.g., ads and
main content) per user

FAST channels (ad supported targeted
channels)

More chance that the user likes what it will
see and hear

State of the Art

to new personalized
presentation

Computationally Expensive

>Transcoding - Full transcode P Player logic,

>player based ad insertion
etc..x

Customized player behavior
backward compatibility

Offline transcoding
+

Just-in-time packaging

Reaching all devices with repurpose content

>MP4

> Microsoft Smooth
Streaming (HSS)

>HTTP Live Streaming
(HLS)

>DASH (including
early versions)

>Common denominator is using
a single media timeline as
required in MP4

@ Unified Streaming

Authoring of Targeted Media Presentations Framework (Sec.2.2)

—

=

g

ey |

Media o

playlists rm"_ =
4

Y
ONIHOHLNY LN3ILNOD

-:;—-{ JIT Packager }7

>

HAS Cache HAS
Static - Dynamic
Streaming Streaming
Presentation Presentation

Y
AY3AIT3A VIa3IW

CMAF Transcoding component (Sec. 3.1)

> Bitrate alignment

>Same segment |

duration
>Segment boundary |

alignment
>Interchangeable

segments
> Audio & timed text
is also transcoded

‘tfdt’=T

‘“tfdt’=T+duration(N)

CMAF Fragments are time aligned

‘tfdt’=T+duration(N) and have continuous duration
+ duration(N+1)

Source:https://cdn.cta.tech/cta/media/media/resources/standards/pdfs/cta-5001-c_final.pdf

G‘ Unified Streaming

ISO/IEC 23000-19:2020, (24-27)

Content Authoring overview
O e

Media Representations (e.g., bitrate, codec, etc.)

ONIHOHLNY LN31LNOD

Track 1-a: Track 2-a: Track 3-a: Track N-
CMAF Audio cmfa Video cmfv Video cmfv ackN-a
Tra nSCOd I ng AD B Track 1-b: Track 2-b: Track 3-b: Track N-b %
Audio cmfa Video cmfv Video cmfv =
_) Available ——— | "U”
media MAIN 1 sl I rack s-m . g Track 3-ml: B o o N-m1 o
Audio cmfa Video cmfv Video cmfv
content - £
rogram
: progra AD K | Tracklk: Track 2-k: Track 3-k: Track Nk @
: Audio cmfa || Video cmfv || Video cmfv rack -
. / SMIL \‘)
‘{ Media O ’
playlists
JIT Packager
Media Presentations :
(HAS StatchDynamlc) I
U .
| o O0:
y Seg. l.+4 Seg. t+n WFY W:
Xk
¢
Seg. t + n BN
= 3.
Q.
)) Media
edia Representations Presentation
(e.g., bitrate, codec, etc.) Time

Media Delivery (Sec. 4)

>HTTP based media delivery
> Content delivery

> Cache keys — Different cache keys
for Each presentation

> Re-purpose content delivery
component is introduced based on a
smart edge cache using Varnish and
use case specific caching logic

@ Unified Streaming

Player Edge Proxy Cache JIT Packager SMIL Playlists Storage

GET Media Segment

Hash based approach (Sec. 4.3)

from cache and delive

i _a i a i
i | i pckager | | i i
[I ’ [[[
: : HEAD Media Segment : : :
> FNV-1a hash | l E— |
[| l — _ SMLPlaylist | [
| | | | |
> HTTP HEAD request | | | = -
[: e M ___ J
| o _PWaanes |
|
[
[

|

| If match,

I rewrite object

| r
|

GET Media Segment

If no match,
generate a GET
method

GET Media Segment

GET SMIL Playlist

le — _ SWiLPlaylist
Il GETI4P4 _
S S

|

| | Add new object
| to cache

|

Media Segment (.dash, .mas) |

|
|
|
|
|
|
L

Player Edge Proxy Cache JIT Packager SMIL Playlists Storage

Player Edge Proxy Cache JIT Packager SMIL Playlists Storage

GET Media Segment

Name Scheme
approach (Sec. 4.1)

Get segment
timing information
from URL

T

|

|

|

|

|

|

I Name Scheme
: look up
|

|

|

|

|

|

If match,
rewrite object
from cache and deliver

Media Segment (.dash, .m4s)
o = e o ———— -

GET Media Segment

If no match,
generate a GET
method

GET SMIL Playlist

SMIL Playlist

\j

Add new object
to key-value
pair table

Media Segment (.dash, .m4s)

-

Player Edge Proxy Cache JIT Packager SMIL Playlists Storage

Segment Naming Scheme (4.1)

Augmented Backus-Naur (ABNF) form

segment-name *(AssetId sep start
sep duration [sep assetTimeOff])
sep contentType sep CodecType
sep bitRate sep Time fileType

DIGIT %x30-39; 0-9

ALPHA %x41-5A / %x61-7A; A-Z / a-z
sep -/ _

assetID = ALPHA *(ALPHA / DIGIT)

start = *DIGIT

assetOff *DIGIT

duration *DIGIT

contentType "audio" / "video" / "text" / "meta"
codecType 4(DIGIT / ALPHA)

bitRate *DIGIT

time *DIGIT

filetype .m4s / .mp4 / .dash / .cmfs

ABNF: https://www.rfc-editor.org/rfc/rfc5234

G‘ Unified Streaming

Name Scheme delivery implementation using Varnish

HAS Streaming Presentation response/

> Multi-thread based processing
> HTTP Routing and Header manipulation
> Independent client request/response from

backend fetch.
> Implement using Varnish Configuration
Language

Cache key-value pair store table
<CACHE_KEY> || <CACHE_VALUE>
<AssetID>- <playlistName>/dash/
<$RepresentationID$>- || <playlistName>-
<$Time$> <$RepresentationID$>-

<$Time$>

.@' Unified Streaming

A

Media Player >

|
HTTP(s) Request

Look up for cash key entry

VARNISH CACHE
REQUEST
Request is not cacheable

VARNISH URL
HASH

Cache key found NAME SCHEME
LOOKUP

O,

Retrieve content from cache

- - -

Retrieve media from backend :

-

FETCH

\

)= >
_/ HTTP(s) Response
1

y

' HTTP(s) Request

NAME SCHEME
CACHE WRITE

- - -

BACKEND

Example test cases

> Test of playlists with
different pre-roll and mid
rolls

> Cache not loaded

> Cache loaded with 1 other
stream (playlist A)

Avg. response time

Cache not loaded (Sec 5.3) VS Pre-loaded cache (Sec. 5.4)

Avg. response time [ms]

o Conf. CDN = Conf. Hash = Conf. Name Scheme o Conf. CDN = Conf. Hash = Conf. Name Scheme
26 26
24 24
22 22
20 20
)
18 E 18
Q
16 £ 16
14 814
c
12 8 12|
o
10 = 10|
o
8 I 8|
6 6l
4 4l
2 ol
0 0
Playlist A Playlist B Playlist C Playlist D Playlist E Playlist B Playlist C Playlist D Playlist E

Media Playlist Media Playlist

Pre-loaded Cache (5.4)

Cache size [Bytes] Backend traffic [Mbps]

o Conf. CDN = Conf. Hash = Conf. Name Scheme o Conf. CDN = Conf. Hash = Conf. Name Scheme

I

D
(4)}

W
O
<
o
n o

w
o
<
.
o o

N
a
<
=N

N

o

<
©

—

9]

<
n
4]

n

o
<
\
|
Avg. Backend throughput [Mbps]
w
[9)]

Cache increase per playlist [Bytes]
o

5
<

o
i
\

ol S I N S P) .

Playlist B Playlist C Playlist D Playlist E Playlist B Playlist C Playlist D Playlist E
Media Playlist Media Playlist

o

Summary

Re-purposed content streaming to a broad range of devices.
Authoring component using offline CMAF transcoding with segment and bit-rate alignment.

Authoring component using just-in-time packaging to create the re-purposed presentations
on-the-fly.

HTTP Delivery component with two optimized caching approaches, using a naming scheme
or a hashing scheme

PoC using Varnish Enterprise and Unified Origin was implemented and evaluated.
Low response time overhead, reduced backend traffic and reduced cache sizes.

Next steps we are looking to deploy this at a larger scale and in production.

Questions?

Thank youl!

For any questions, feel free to contact me or
Roberto at:

rufael@unified-streaming.com
OR

roberto@unified-streaming.com

https://doi.org/10.1145/3588444.3591005

mailto:rufael@unified-streaming.com
mailto:roberto@unified-streaming.com
mailto:amsterdam@fotodeboer.nl

	Default Section
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Avg. response time
	Slide 15: Pre-loaded Cache (5.4)
	Slide 16
	Slide 17
	Slide 18

