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• Satisfied: didn’t perceive difference

• Not satisfied: perceived a difference
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1.3. Motivation of JND and SUR

• Each video content is encoded at multiple bitrates and resolutions 
and a convex hull is formed based on the quality of encodings

12

Question: which encodings to 
select from the convex hull to 
construct a bitrate ladder?
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• Prevent similar representations
• Use least resources for the same quality



2.1. VMAF proxy for JND 

16

• Method 1: Anchor quality dependent JND:
• A framework to map vmaf with the probability of just noticeable difference between video 

encoding recipes. Zhu et al. IVMSP 2022

• Method 2: Content dependent JND:
• Between Two and Six? Towards Correct Estimation of JND Step Sizes for VMAF-based Bitrate 

Laddering. Amirpour et al. Qomex 2022

Large scale JND datasets VideoSet[1]:
• 220 5-second SRCs
• H.264 (QP 1 to 51)
• 4 resolution (1080p, 720p, 540p, 

360p)

[1] Wang et al. VideoSet: A Large-Scale Compressed Video Quality Dataset Based on JND Measurement.
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2.1. VMAF proxy: optimization for subjective 
test
• Binary search [1]

•

• JCP: JND Candidate Playlist, e.g., QP (1~51)

• Pre-processing: reduce JCP
• Reduce 7.14% subjective test duration [2]
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[1] Wang et al. VideoSet: A Large-Scale Compressed Video Quality Dataset Based on JND Measurement.
[2] Subjective test methodology optimization and prediction framework for Just Noticeable Difference and 
Satisfied User Ratio for compressed HD video. Zhu et al. PCS 2022

( )( )(3/4)_ log 1/Nb comparison len JCP=



2.2. SUR modeling and prediction: drawbacks 
in current work
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• Gaussian assumption [1-5]

• Point-by-point prediction in SUR curve [1-4]

[1] Wang et al. Prediction of Satisfied User Ratio for Compressed Video.
[2] Wang et al. Analysis and Prediction of JND Video Quality Model.
[3] Zhang et al. Satisfied-User-Ratio Modeling for Compressed Video.
[4] Zhang et al. Deep Learning Based Just Noticeable Difference and Perceptual Quality Prediction 
Models for Compressed Video.
[5] Wang et al. VideoSet: A Large-Scale Compressed Video Quality Dataset Based on JND Measurement.
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• Point-by-point prediction in SUR curve [1-4]

[1] Wang et al. Prediction of Satisfied User Ratio for Compressed Video.
[2] Wang et al. Analysis and Prediction of JND Video Quality Model.
[3] Zhang et al. Satisfied-User-Ratio Modeling for Compressed Video.
[4] Zhang et al. Deep Learning Based Just Noticeable Difference and Perceptual Quality Prediction 
Models for Compressed Video.
[5] Wang et al. VideoSet: A Large-Scale Compressed Video Quality Dataset Based on JND Measurement.

• Computationally 
expensive

• Not monotonic 
non-increasing



2. Pipeline of SUR and JND modeling and 
prediction
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On the benefit of parameter-driven approaches for the modeling and the prediction of satisfied user 
ratio for compressed video. Zhu et al. ICIP2022

• Gaussian distributions are  not the 
best option for JND modeling

• For SUR curve prediction, 
parameter-driven approaches are 
much less complex than point-by-
point



3. Work in progress
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• Improve accuracy and reduce complexity

• SUR and JND modeling and prediction through different proxies: 
VMAF, Bitrate, QP, CRF …
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Thank you for your questions



Annex
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HD JND VMAF lookup table
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2.1. Modeling of SUR 
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Step 1: Compute empirical SUR: 



2.1. Modeling of SUR
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Step 2: find the best fit of



2.1. Modeling of SUR
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Step 2: find the best fit

Linear regression
Monotonic constraint

Non-linear least square



2.2. Prediction of SUR
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Baseline model (Wang et al. PREDICTION OF SATISFIED USER 
RATIO FOR COMPRESSED VIDEO)
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Baseline model (Wang et al. PREDICTION OF SATISFIED USER 
RATIO FOR COMPRESSED VIDEO)

• Computationally expensive
• Not monotonic non-increasing
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3.1. Results of modeling
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3.2. results of prediction
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4. Main takes away

• Gaussian is not the best modeling for JND

• Parameter-driven is better than point-by-point for SUR curve 
prediction

• the quality degradation features from PVSs can improve but are not 
crucial to SUR prediction
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5. Work in progress

• VMAF as proxy of JND:
• Zhu, J., Ling, S., Baveye, Y., & Le Callet, P. (2022, June). A Framework to Map VMAF with the 

Probability of Just Noticeable Difference between Video Encoding Recipes. In 2022 IEEE 14th Image, 
Video, and Multidimensional Signal Processing Workshop (IVMSP) (pp. 1-5). IEEE.

• improvement

• New VW-JND datasets for HD, HDR videos:
• Zhu, J., Perrin, A. F., & Le Callet, P. (2022, December). Subjective test methodology optimization and 

prediction framework for Just Noticeable Difference and Satisfied User Ratio for compressed HD 
video. In 2022 Picture Coding Symposium.

• Improvement of prediction
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