

Elevating Your Streaming Experience with Just Noticeable Difference (JND)-based Encoding

Jingwen Zhu¹, Hadi Amirpour², Vignesh V Menon², Raimund Schatz³, Patrick Le Callet¹

¹ Nantes Universite, Ecole Centrale Nantes, CAPACITES SAS, CNRS, LS2N, UMR 6004, F-44000 Nantes, France

^{2.} Christian Doppler Laboratory ATHENA, Alpen-Adria-Universität, Klagenfurt, Austria

^{3.} AIT Austrian Institute of Technology, Austria

2023/05/10

Outlines

1. Context

- What is JND
- What is SUR
- Motivation
- 2. Solutions
 - 1. VMAF proxy for JND
 - 2. SUR modeling and prediction
- 3. Work in progress

Perceptual quality level

nth

" JNI

Proxy of JND : encoding parameters,
 VMAF, bitrate ...

SRC

QP=N+1

The scope of research:

- JND type: video wise
- **Distortion** : video compression
- Proxy of JND : encoding parameters,
 VMAF, bitrate ...

SRC

QP=N+1

Determinants:

1. Display setting (e.g. viewing

distance, monitor profiling, etc.)

- 2. Subjects/viewers/observers
- 3. Video content

SRC

Determinants:

1. Display setting (e.g. viewing

distance, monitor profiling, etc.)

- 2. Subjects/viewers/observers
- 3. Video content

1.2. What is Satisfied User Ratio (SUR) curve ?

1.2. What is Satisfied User Ratio (SUR) curve ?

1.2. What is Satisfied User Ratio (SUR) curve ?

11

• Each video content is encoded at multiple bitrates and resolutions and a convex hull is formed based on the quality of encodings

Question: which encodings to select from the convex hull to construct a bitrate ladder?

• Each video content is encoded at multiple bitrates and resolutions and a convex hull is formed based on the quality of encodings

Question: which encodings to select from the convex hull to construct a bitrate ladder?

• Each video content is encoded at multiple bitrates and resolutions and a convex hull is formed based on the quality of encodings

• Each video content is encoded at multiple bitrates and resolutions and a convex hull is formed based on the quality of encodings

2.1. VMAF proxy for JND

Large scale JND datasets VideoSet[1]:

- 220 5-second SRCs
- H.264 (QP 1 to 51)
- 4 resolution (1080p, 720p, 540p, 360p)

- Method 1: Anchor quality dependent JND:
 - A framework to map vmaf with the probability of just noticeable difference between video encoding recipes. Zhu et al. IVMSP 2022
- Method 2: Content dependent JND:
 - Between Two and Six? Towards Correct Estimation of JND Step Sizes for VMAF-based Bitrate Laddering. Amirpour et al. Qomex 2022

[1] Wang et al. VideoSet: A Large-Scale Compressed Video Quality Dataset Based on JND Measurement.

2.1. VMAF proxy for JND

Large scale JND datasets VideoSet[1]:

- 220 5-second SRCs
- H.264 (QP 1 to 51)
- 4 resolution (1080p, 720p, 540p, 360p)

- Method 1: Anchor quality dependent JND:
 - A framework to map vmaf with the probability of just noticeable difference between video encoding recipes. Zhu et al. IVMSP 2022
- Method 2: Content dependent JND:
 - Between Two and Six? Towards Correct Estimation of JND Step Sizes for VMAF-based Bitrate Laddering. Amirpour et al. Qomex 2022

[1] Wang et al. VideoSet: A Large-Scale Compressed Video Quality Dataset Based on JND Measurement.

2.1. VMAF proxy for JND

Large scale JND datasets VideoSet[1]:

- 220 5-second SRCs
- H.264 (QP 1 to 51)
- 4 resolution (1080p, 720p, 540p, 360p)

- Method 1: Anchor quality dependent JND:
 - A framework to map vmaf with the probability of just noticeable difference between video encoding recipes. Zhu et al. IVMSP 2022
- Method 2: Content dependent JND:
 - Between Two and Six? Towards Correct Estimation of JND Step Sizes for VMAF-based Bitrate Laddering. Amirpour et al. Qomex 2022

[1] Wang et al. VideoSet: A Large-Scale Compressed Video Quality Dataset Based on JND Measurement.

2.1. VMAF proxy: optimization for subjective test

- Binary search [1]
 - $Nb_comparison = \log_{(3/4)}(1/len(JCP))$
 - JCP: JND Candidate Playlist, e.g., QP (1~51)
- Pre-processing: reduce JCP
 - Reduce 7.14% subjective test duration [2]

 [1] Wang et al. VideoSet: A Large-Scale Compressed Video Quality Dataset Based on JND Measurement.
 [2] Subjective test methodology optimization and prediction framework for Just Noticeable Difference and Satisfied User Ratio for compressed HD video. Zhu et al. PCS 2022

2.2. SUR modeling and prediction: drawbacks in current work

- Gaussian assumption [1-5]
- Point-by-point prediction in SUR curve [1-4]

[1] Wang et al. Prediction of Satisfied User Ratio for Compressed Video.

- [2] Wang et al. Analysis and Prediction of JND Video Quality Model.
- [3] Zhang et al. Satisfied-User-Ratio Modeling for Compressed Video.

[4] Zhang et al. Deep Learning Based Just Noticeable Difference and Perceptual Quality Prediction Models for Compressed Video.

[5] Wang et al. VideoSet: A Large-Scale Compressed Video Quality Dataset Based on JND Measurement.

2.2. SUR modeling and prediction: drawbacks in current work

- Gaussian assumption [1-5]
- Point-by-point prediction in SUR curve [1-4]

- Computationally expensive
- Not monotonic non-increasing

[1] Wang et al. Prediction of Satisfied User Ratio for Compressed Video.

- [2] Wang et al. Analysis and Prediction of JND Video Quality Model.
- [3] Zhang et al. Satisfied-User-Ratio Modeling for Compressed Video.

[4] Zhang et al. Deep Learning Based Just Noticeable Difference and Perceptual Quality Prediction Models for Compressed Video.

[5] Wang et al. VideoSet: A Large-Scale Compressed Video Quality Dataset Based on JND Measurement.

2. Pipeline of SUR and JND modeling and prediction

- **Gaussian** distributions are not the best option for JND modeling
- For SUR curve prediction, parameter-driven approaches are much less complex than point-bypoint

On the benefit of parameter-driven approaches for the modeling and the prediction of satisfied user ratio for compressed video. Zhu et al. ICIP2022

3. Work in progress

- Improve accuracy and reduce complexity
- SUR and JND modeling and prediction through different proxies: VMAF, Bitrate, QP, CRF ...

Thank you for your questions

2023/05/10

Annex

HD JND VMAF lookup table

2.1. Modeling of SUR

Step 1: Compute empirical SUR:

$$p(x) = P(JND = x) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{1} (j_i = x),$$

$$CDF_{emp}(x) = P(JND \le x) = \sum_{\omega < x} p(\omega).$$

 $SUR_{emp}(x) = 1 - CDF_{emp}(x).$

2.1. Modeling of SUR

Step 2: find the best fit of $SUR_{emp}(x)$

Table 1: Summary of candidate model functions. (NB para isthe number of parameters in model function)

Name	Model function	NB para
Polynomial-3	$f(x) = \sum_{k=1}^{n} a_k x^k$	4
Polynomial-4	$f(x) = \sum_{k=0}^{\infty} a_k x$	5
Gaussian	$1 - \frac{1}{2} \left(1 + erf\left(\frac{x-\mu}{\sigma\sqrt{2}}\right) \right)$	2
2-para-logistic	$1 - \frac{1}{1 + e^{-(x-\mu)/s}}$	2
4-para-logistic	$f(x) = b + \frac{L}{1 + e^{-k(x - x_0)}}$	4
Weibull	$e^{-\left(rac{x}{\lambda} ight)^k}$	2
Gumbel	$1 - e^{-e^{-(x-\mu)/\beta}}$	2
	$\frac{-x^2}{(2\sigma^2)}$	1
Rayleigh	e ()	1

2.1. Modeling of SUR

Step 2: find the best fit

Table 1: Summary of candidate model functions. (NB para isthe number of parameters in model function)

Name	Model function	NB para	
Polynomial-3	$f(x) = \sum_{k=1}^{n} a_k x^k$	4	J
Polynomial-4	$f(x) = \sum_{k=0}^{\infty} a_k x$	5	5
Gaussian	$1 - \frac{1}{2} \left(1 + erf\left(\frac{x-\mu}{\sigma\sqrt{2}}\right) \right)$	2	
2-para-logistic	$1 - \frac{1}{1 + e^{-(x-\mu)/s}}$	2	
4-para-logistic	$f(x) = b + \frac{L}{1 + e^{-k(x - x_0)}}$	4	
Weibull	$e^{-\left(rac{x}{\lambda} ight)^k}$	2	~
Gumbel	$1 - e^{-e^{-(x-\mu)/\beta}}$	2	
	$\frac{-x^2}{(2\sigma^2)}$	1	J
Rayleigh	e ()	1	

Linear regression Monotonic constraint

Non-linear least square

2.2. Prediction of SUR

Baseline model (Wang et al. PREDICTION OF SATISFIED USER RATIO FOR COMPRESSED VIDEO)

2.2. Prediction of SUR

- Computationally expensive
- Not monotonic non-increasing

Baseline model (Wang et al. PREDICTION OF SATISFIED USER RATIO FOR COMPRESSED VIDEO)

2.2. Prediction of SUR

Table 2: Mean of MAE, RMSE and $\Delta 75\% SUR_{|E-A|}$ for different model functions with VideoSet [12]

Name	MAE	RMSE	$\Delta 75\% SUR_{ E-A }$
Polynomial-3	0.1204	0.1466	5.0614
Polynomial-4	0.1085	0.1338	4.7420
Gaussian	0.0147	0.0253	0.6625
2-para-logistic	0.0156	0.0250	0.5875
4-para-logistic	0.0164	0.0236	0.5761
Weibull	0.0138	0.0240	0.6761
Gumbel	0.0220	0.0343	0.5977
Rayleigh	0.1451	0.1703	8.9114

Large scale JND datasets VideoSet:

- 220 5-second SRCs
- H.264 (QP 1 to 51)
- 4 resolution (1080p, 720p, 540p, 360p)

 $\Delta p\% SUR_{|E-A|} = |p\% SUR_{emp} - p\% SUR_{analy}|$

Table 2: Mean of MAE, RMSE and $\Delta 75\%$ SUR_{|E-A|} for different model functions with VideoSet [12]

Name	MAE	RMSE	$\Delta 75\% SUR_{ E-A }$
Polynomial-3	0.1204	0.1466	5.0614
Polynomial-4	0.1085	0.1338	4.7420
Gaussian	0.0147	0.0253	0.6625
2-para-logistic	0.0156	0.0250	0.5875
4-para-logistic	0.0164	0.0236	0.5761
Weibull	0.0138	0.0240	0.6761
Gumbel	0.0220	0.0343	0.5977
Rayleigh	0.1451	0.1703	8.9114

Large scale JND datasets VideoSet:

- 220 5-second SRCs
- H.264 (QP 1 to 51)
- 4 resolution (1080p, 720p, 540p, 360p)

 $\Delta p\% SUR_{|E-A|} = |p\% SUR_{emp} - p\% SUR_{analy}|$

Table 2: Mean of MAE, RMSE and $\Delta 75\% SUR_{|E-A|}$ for different model functions with VideoSet [12]

Name	MAE	RMSE	$\Delta 75\% SUR_{ E-A }$
Polynomial-3	0.1204	0.1466	5.0614
Polynomial-4	0.1085	0.1338	4.7420
Gaussian	0.0147	0.0253	0.6625
2-para-logistic	0.0156	0.0250	0.5875
4-para-logistic	0.0164	0.0236	0.5761
Weibull	0.0138	0.0240	0.6761
Gumbel	0.0220	0.0343	0.5977
Rayleigh	0.1451	0.1703	8.9114

Large scale JND datasets VideoSet:

- 220 5-second SRCs
- H.264 (QP 1 to 51)
- 4 resolution (1080p, 720p, 540p, 360p)

 $\Delta p\% \mathrm{SUR}_{|\mathrm{E}-\mathrm{A}|} = |p\% \mathrm{SUR}_{\mathrm{emp}} - p\% \mathrm{SUR}_{\mathrm{analy}}|$

Table 2: Mean of MAE, RMSE and $\Delta 75\%$ SUR_{|E-A|} for different model functions with VideoSet [12]

Name	MAE	RMSE	$\Delta 75\% SUR_{ E-A }$
Polynomial-3	0.1204	0.1466	5.0614
Polynomial-4	0.1085	0.1338	4.7420
Gaussian	0.0147	0.0253	0.6625
2-para-logistic	0.0156	0.0250	0.5875
4-para-logistic	0.0164	0.0236	0.5761
Weibull	0.0138	0.0240	0.6761
Gumbel	0.0220	0.0343	0.5977
Rayleigh	0.1451	0.1703	8.9114

$$\Delta p\% SUR_{|E-A|} = |p\% SUR_{emp} - p\% SUR_{analy}$$

Large scale JND datasets VideoSet:

- 220 5-second SRCs
- H.264 (QP 1 to 51)
- 4 resolution (1080p, 720p, 540p, 360p)

Table 2: Mean of MAE, RMSE and $\Delta 75\% SUR_{|E-A|}$ for different model functions with VideoSet [12]

Name	MAE	RMSE	$\Delta 75\% SUR_{ E-A }$
Polynomial-3	0.1204	0.1466	5.0614
Polynomial-4	0.1085	0.1338	4.7420
Gaussian	0.0147	0.0253	0.6625
2-para-logistic	0.0156	0.0250	0.5875
4-para-logistic	0.0164	0.0236	0.5761
Weibull	0.0138	0.0240	0.6761
Gumbel	0.0220	0.0343	0.5977
Rayleigh	0.1451	0.1703	8.9114

Large scale JND datasets VideoSet:

- 220 5-second SRCs
- H.264 (QP 1 to 51)
- 4 resolution (1080p, 720p, 540p, 360p)

Table 2: Mean of MAE, RMSE and $\Delta 75\% SUR_{|E-A|}$ for different model functions with VideoSet [12]

Name	MAE	RMSE	$\Delta 75\% SUR_{ E-A }$
Polynomial-3	0.1204	0.1466	5.0614
Polynomial-4	0.1085	0.1338	4.7420
Gaussian	0.0147	0.0253	0.6625
2-para-logistic	0.0156	0.0250	0.5875
4-para-logistic	0.0164	0.0236	0.5761
Weibull	0.0138	0.0240	0.6761
Gumbel	0.0220	0.0343	0.5977
Rayleigh	0.1451	0.1703	8.9114

Large scale JND datasets VideoSet:

- 220 5-second SRCs
- H.264 (QP 1 to 51)
- 4 resolution (1080p, 720p, 540p, 360p)

RES	Model name	ΔS	UR	$\Delta 75\% SUR$	
	Woder name	$ \mathbf{P} - \mathbf{A} $	$ \mathbf{P} - \mathbf{E} $	$ \mathbf{P} - \mathbf{A} $	$ \mathbf{P} - \mathbf{E} $
	baseline	0.0769	0.0799	4.3682	4.3773
360n	2-p-Gaussian	0.0459	0.0480	2.4773	2.5864
300p	2-p-Logistic	0.0462	0.0489	2.4455	2.5682
	4-p-Logistic	0.0496	0.0515	2.4591	2.5909
	baseline	0.0786	0.0812	4.3182	4.2909
540n	2-p-Gaussian	0.0397	0.0428	2.1182	2.1045
540p	2-p-Logistic	0.0398	0.0437	1.9727	2.0955
	4-p-Logistic	0.0435	0.0458	2.0045	2.1000
	baseline	0.0783	0.0820	4.2864	4.2909
720n	2-p-Gaussian	0.0433	0.0447	2.1636	2.2045
720p	2-p-Logistic	0.0435	0.0459	2.1636	2.2364
	4-p-Logistic	0.0467	0.0476	2.1636	2.2318
1080-	baseline	0.0801	0.0834	4.6000	4.5591
	2-p-Gaussian	0.0412	0.0431	2.3455	2.2136
1000b	2-p-Logistic	0.0409	0.0440	2.1182	2.1773
	4-p-Logistic	0.0439	0.0455	2.1455	2.1727

RES	Model name	ΔS	UR	$\Delta 75\% SUR$	
KES		$ \mathbf{P} - \mathbf{A} $	$ \mathbf{P} - \mathbf{E} $	$ \mathbf{P} - \mathbf{A} $	$ \mathbf{P} - \mathbf{E} $
	baseline	0.0769	0.0799	4.3682	4.3773
360n	2-p-Gaussian	0.0459	0.0480	2.4773	2.5864
300p	2-p-Logistic	0.0462	0.0489	2.4455	2.5682
	4-p-Logistic	0.0496	0.0515	2.4591	2.5909
	baseline	0.0786	0.0812	4.3182	4.2909
540m	2-p-Gaussian	0.0397	0.0428	2.1182	2.1045
540p	2-p-Logistic	0.0398	0.0437	1.9727	2.0955
	4-p-Logistic	0.0435	0.0458	2.0045	2.1000
	baseline	0.0783	0.0820	4.2864	4.2909
720n	2-p-Gaussian	0.0433	0.0447	2.1636	2.2045
720p	2-p-Logistic	0.0435	0.0459	2.1636	2.2364
	4-p-Logistic	0.0467	0.0476	2.1636	2.2318
1080p	baseline	0.0801	0.0834	4.6000	4.5591
	2-p-Gaussian	0.0412	0.0431	2.3455	2.2136
	2-p-Logistic	0.0409	0.0440	2.1182	2.1773
	4-p-Logistic	0.0439	0.0455	2.1455	2.1727

RES	Model name	ΔSUR		$\Delta 75\% \mathrm{SUR}$	
KES	Widder fiame	$ \mathbf{P} - \mathbf{A} $	$ \mathbf{P} - \mathbf{E} $	$ \mathbf{P} - \mathbf{A} $	$ \mathbf{P} - \mathbf{E} $
	baseline	0.0769	0.0799	4.3682	4.3773
260n	2-p-Gaussian	0.0459	0.0480	2.4773	2.5864
300p	2-p-Logistic	0.0462	0.0489	2.4455	2.5682
	4-p-Logistic	0.0496	0.0515	2.4591	2.5909
	baseline	0.0786	0.0812	4.3182	4.2909
540n	2-p-Gaussian	0.0397	0.0428	2.1182	2.1045
540p	2-p-Logistic	0.0398	0.0437	1.9727	2.0955
	4-p-Logistic	0.0435	0.0458	2.0045	2.1000
	baseline	0.0783	0.0820	4.2864	4.2909
720n	2-p-Gaussian	0.0433	0.0447	2.1636	2.2045
720p	2-p-Logistic	0.0435	0.0459	2.1636	2.2364
	4-p-Logistic	0.0467	0.0476	2.1636	2.2318
1020-	baseline	0.0801	0.0834	4.6000	4.5591
	2-p-Gaussian	0.0412	0.0431	2.3455	2.2136
1000	2-p-Logistic	0.0409	0.0440	2.1182	2.1773
	4-p-Logistic	0.0439	0.0455	2.1455	2.1727

DEC	Model name	ΔSUR		$\Delta 75\%$ SUR	
KL3	Woder name	$ \mathbf{P} - \mathbf{A} $	$ \mathbf{P} - \mathbf{E} $	$ \mathbf{P} - \mathbf{A} $	$ \mathbf{P} - \mathbf{E} $
	baseline	0.0769	0.0799	4.3682	4.3773
360n	2-p-Gaussian	0.0459	0.0480	2.4773	2.5864
300p	2-p-Logistic	0.0462	0.0489	2.4455	2.5682
	4-p-Logistic	0.0496	0.0515	2.4591	2.5909
	baseline	0.0786	0.0812	4.3182	4.2909
540m	2-p-Gaussian	0.0397	0.0428	2.1182	2.1045
540p	2-p-Logistic	0.0398	0.0437	1.9727	2.0955
	4-p-Logistic	0.0435	0.0458	2.0045	2.1000
	baseline	0.0783	0.0820	4.2864	4.2909
720n	2-p-Gaussian	0.0433	0.0447	2.1636	2.2045
720p	2-p-Logistic	0.0435	0.0459	2.1636	2.2364
	4-p-Logistic	0.0467	0.0476	2.1636	2.2318
	baseline	0.0801	0.0834	4.6000	4.5591
1080p	2-p-Gaussian	0.0412	0.0431	2.3455	2.2136
	2-p-Logistic	0.0409	0.0440	2.1182	2.1773
	4-p-Logistic	0.0439	0.0455	2.1455	2.1727

RES	Model name	ΔSUR		$\Delta 75\% SUR$	
		$ \mathbf{P} - \mathbf{A} $	$ \mathbf{P} - \mathbf{E} $	$ \mathbf{P} - \mathbf{A} $	$ \mathbf{P} - \mathbf{E} $
360p	baseline	0.0769	0.0799	4.3682	4.3773
	2-p-Gaussian	0.0459	0.0480	2.4773	2.5864
	2-p-Logistic	0.0462	0.0489	2.4455	2.5682
	4-p-Logistic	0.0496	0.0515	2.4591	2.5909
540p	baseline	0.0786	0.0812	4.3182	4.2909
	2-p-Gaussian	0.0397	0.0428	2.1182	2.1045
	2-p-Logistic	0.0398	0.0437	1.9727	2.0955
	4-p-Logistic	0.0435	0.0458	2.0045	2.1000
720p	baseline	0.0783	0.0820	4.2864	4.2909
	2-p-Gaussian	0.0433	0.0447	2.1636	2.2045
	2-p-Logistic	0.0435	0.0459	2.1636	2.2364
	4-p-Logistic	0.0467	0.0476	2.1636	2.2318
1080p	baseline	0.0801	0.0834	4.6000	4.5591
	2-p-Gaussian	0.0412	0.0431	2.3455	2.2136
	2-p-Logistic	0.0409	0.0440	2.1182	2.1773
	4-p-Logistic	0.0439	0.0455	2.1455	2.1727

Table 4: Averaged prediction error comparison betweenSRC-based and SRC+PVS based model on 1080p with Guassian modeling.

Model	ΔSUR		$\Delta 75\% SUR$	
WIOdel	$ \mathbf{P} - \mathbf{A} $	$ \mathbf{P} - \mathbf{E} $	$ \mathbf{P} - \mathbf{A} $	$ \mathbf{P} - \mathbf{E} $
SRC-based	0.0412	0.0431	2.3455	2.2136
SRC+PVS-based	0.0377	0.0412	2.0727	2.1409

4. Main takes away

- Gaussian is not the best modeling for JND
- Parameter-driven is better than point-by-point for SUR curve prediction
- the quality degradation features from PVSs can improve but are not crucial to SUR prediction

5. Work in progress

- VMAF as proxy of JND:
 - Zhu, J., Ling, S., Baveye, Y., & Le Callet, P. (2022, June). A Framework to Map VMAF with the Probability of Just Noticeable Difference between Video Encoding Recipes. In 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP) (pp. 1-5). IEEE.
 - improvement
- New VW-JND datasets for HD, HDR videos:
 - Zhu, J., Perrin, A. F., & Le Callet, P. (2022, December). Subjective test methodology optimization and prediction framework for Just Noticeable Difference and Satisfied User Ratio for compressed HD video. In *2022 Picture Coding Symposium*.
 - Improvement of prediction

