

Traditional Video Encoding by Intelligent Handling

Cloud Service Al Transcoding + Storage/Distribution

Allocate *bits* to the most **perceptually significant areas**.


An Example

Transcoded by x264 (Open source)
Resolution: 241x136 File size: 1.3MB

x264 file Link

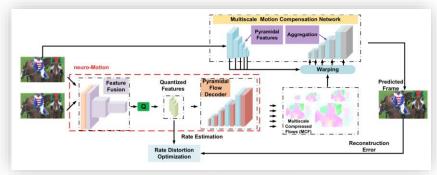
Transcoded by Aurora4 H264 (Visionular) Resolution: 426x240 File size: 1.3MB

Aurora4 file Link

Source Video (From customer)
Resolution: 640x360 File size: 2.0MB

Source file Link

Encoding with Intelligent Optimization: Much higher resolution with superior visual quality can be achieved while maintaining the same bitrate level.


End-to-End Neural Video Coding (E2E-NVC)

DNN-based techniques used in preprocessing, coding, and post-processing of a practical video compression system

Dandan Ding, Zhan Ma, Di Chen, Qingshuang Chen, Zoe Liu, and Fengqing Zhu, "Advances In Video Compression System Using Deep Neural Network: A Review And Case Studies", in *The Proceedings of The IEEE* (invited paper), vol. 109, no. 9, September 2021, pp 1494-1520

Neuro Intro

Hybrid-Based Coding Framework

End-to-End Learned Video Compression

From Predictive Coding to Conditional Coding

	HM	JM	VTM	VTM*	x264	x265	DVC_Pro	MLVC	RLVC	DCVC	Ours
UVG	0.0	108.1	-28.9	4.6	176.8	109.2	137.7	66.5	140.1	67.3	-9.0
MCL-JCV	0.0	95.4	-31.2	-7.2	143.3	84.4	99.3	66.8	124.8	42.8	-3.2
MCL-JCV-26	0.0	101.9	-31.0	-6.4	161.0	93.6	92.0	56.1	115.8	37.3	-9.7
HEVC Class B	0.0	96.9	-28.8	-8.2	144.6	76.1	123.7	61.4	122.6	56.0	-5.3
HEVC Class C	0.0	56.6	-29.0	-3.8	79.8	46.2	124.0	124.1	118.9	76.9	15.1
HEVC Class D	0.0	50.0	-26.5	-3.5	72.0	43.8	93.6	96.1	81.2	52.8	-5.4
HEVC Class E	0.0	80.5	-29.1	-10.0	153.2	60.3	283.0	138.8	246.2	156.8	18.5
HEVC Class RGB	0.0	102.4	-29.7	-1.7	151.9	82.8	102.1	82.1	114.2	51.9	-14.4

†Unless otherwise specified, we configure JM, IM, and VTM with the highest-compression-ratio settings for low-del y coding. ‡VTM* uses one reference frame instead of the default four frames in VTM. Note that our scheme uses one reference frame for motion estimation.

TABLE II BD-rate for MS SSIM (intra period 32). The anchor is HM.

	HM	JM	VTM	VTM*	x264	x265	DVC_Pro	MLVC	RLVC	DCVC	Ours
UVG	0.0	105.6	-27.0	2.3	169.9	87.9	36.2	64.7	49.4	9.2	-25.5
MCL-JCV	0.0	108.5	-30.4	-5.8	141.0	71.9	7.8	50.3	34.5	-16.3	-38.3
MCL-JCV-26	0.0	113.4	-30.3	-6.5	152.0	74.3	0.7	44.2	23.3	-18.8	-40.5
HEVC Class B	0.0	112.4	-26.9	-4.2	150.3	71.1	23.5	50.2	28.3	0.9	-40.8
HEVC Class C	0.0	61.3	-27.9	-3.4	89.9	53.5	17.0	53.1	30.0	-8.9	-42.4
HEVC Class D	0.0	52.4	-25.9	-3.0	80.0	49.7	-7.8	40.4	0.2	-24.2	-52.6
HEVC Class E	0.0	90.9	-27.8	-7.8	184.5	55.0	110.1	106.1	87.1	38.0	-40.9
HEVC Class RGB	0.0	107.4	-27.2	-3.9	135.9	64.9	18.3	51.8	21.5	3.3	-43.4

Xihua Sheng, Jiahao Li, Bin Li, Li Li, Dong Liu, and Yan Lu, "Temporal Context Mining for Learned Video Compression", in *IEEE Transactions on Multimedia*, November 2022, pp 1-12,

doi: 10.1109/TMM.2022.3220421.