mhv/2023

Towards Algorithmic Foundations for Customizable Video Delivery

Michael Schapira (Compira Labs) Eden Zerbib-Itah (Compira Labs)

mhv<u>/2023</u>

Bad content delivery impacts user experience

- Poor picture resolution
- High latency / delay ('time behind live')
- Re-buffering
- Long startup time

Internet Congestion Control (CC)

too slow might harm performance

too fast might overflow the pipe

How fast should data be transmitted?

mhv<u>/2023</u>

The limitations of one-size-fits-all CC

- Congestion control <u>logic</u> is traditionally oblivious to both

 the service-specific QoE requirements
 the prevailing network conditions wrt different users
- Congestion control algorithms are expected to perform well across a daunting breadth of application domains and networks.
- No universal CC logic can optimize performance across all networks and performance metrics.

mhv/2023

Warmup: a simple scenario

- A single traffic sender is <u>repeatedly</u> sending traffic across a single link
- The link has certain characteristics
 BW, latency, non-congestion loss, buffer size
- We wish to learn which of a set of possible CC configurations is optimal for the sender.

mhv/2023 A multi-armed bandit problems!

- A decision maker (agent) repeatedly chooses one of n actions
- After each choice a_t , a reward r_t is observed
- Let $E\langle r_t / a_t \rangle = Q^*(a_t)$
- The objective is to maximize the long-term reward
- CC configuration learning as multi-armed bandit task

 agent = sender
 action = CC configuration
 reward = performance score

mhv/2023 A multi-armed bandit problems!

- Had we known $E\langle r_t / a_t \rangle = Q^*(a_t)$ in advance, we would have simply chosen the best action (CC configuration).
- To solve the multi-armed bandit problem, you must explore a variety of actions and then exploit the best of them.
 A delicate tradeoff...
- Different algorithmic approaches

 οε-Greedy, softmax, UCB

Simple Lab Experiments

- Single sender on a single link, emulated using mininet.
- 4 candidate CC configurations.
- A CC configuration is learned over time through the sender's repeated interaction with the link.
- We vary

- o the link parameters
- the performance metric
- $\circ~$ the CE configurations

Experiment 1

- **Link**: BW=60Mbps, latency=30ms, 1 BDP buffer, random loss = 0
- Performance metric:

 $\frac{sum-delivered}{duration} - \alpha \times \max\{|oss-0.01, 0\} - \beta \frac{\max RTT}{\min RTT}$

PCC configuration (slow start, loss penalty, latency penalty)	Average performance score
(1.92,2,1)	1.77
(1.92,2,2)	1.47
(1.92,2,3)	1.68
(1.92,2,5)	5.4

Experiment 1: Results

Experiment 2

- Link: BW=60Mbps, latency=30ms, 1 BDP buffer, random loss = 3%
- Performance metric:

 $\frac{sum-delivered}{duration} - \alpha \times \max\{loss-0.03, 0\} - \beta \times \max\{\frac{\max RTT}{\min RTT} - 5, 0\}$

PCC configuration (slow start, loss penalty, latency penalty)	Average performance score
(1.92,0,0.5)	-5.8
(1.92,1,0.5)	0.17
(1.92,5,0.5)	1.24
(1.92,20,0.5)	2.27

Experiment 2: Results

mhv<u>/2023</u>

Generalizing from the simple scenario

- **Temporal** patterns in traffic (and competition)!
- How can configurations be **<u>safely</u>** probed?
- How can we quantify performance in terms of what we actually care about (<u>video QoE</u>)?
- **Where** should customization be performed?
- At what granularity?

mhv/2023 Conclusion and next steps

- Customizing CC to both the service and the network is key to improving over today's one-size-fits-all CC
- This can have significant implications for video QoE in the field (stay tuned)
- We are currently taking our first steps towards realizing this broad agenda.

Thanks!

