

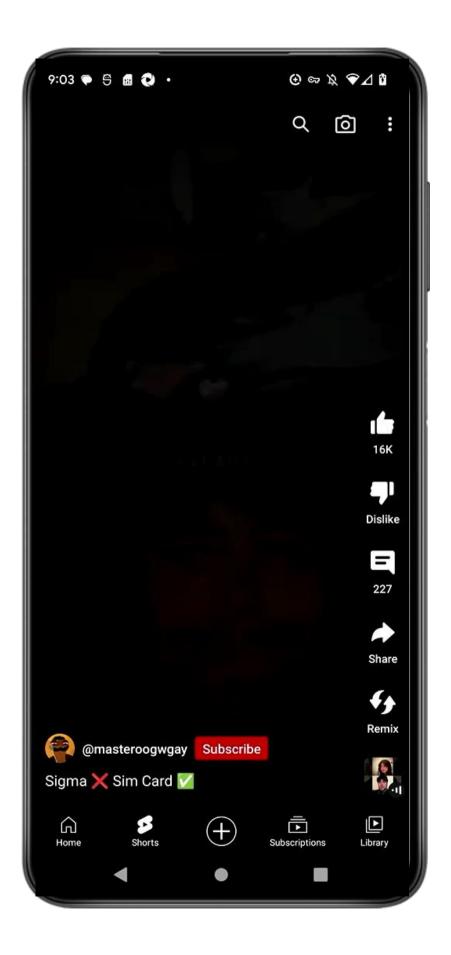
Measuring QoE for Short-Form Videos

May 10th 2023 Yoann Hinard COO, Witbe

About the presenter

Yoann Hinard Chief Operations Officer at Witbe since 2009 Project manager for the first replay TV services in France PhD in Network Security and Group Communications (2007)

V For me, a good TikTok app needs to be fast and smooth so I can quickly swipe through my feed and watch videos without any lag. At the same time, the video quality should be clear and sharp, so I can see all the details of the content.


ChatGPT

Key takeaways

- Fast
- Smooth
- Quickly swipe through feed and watch videos without any lag
- Video quality should be clear and sharp

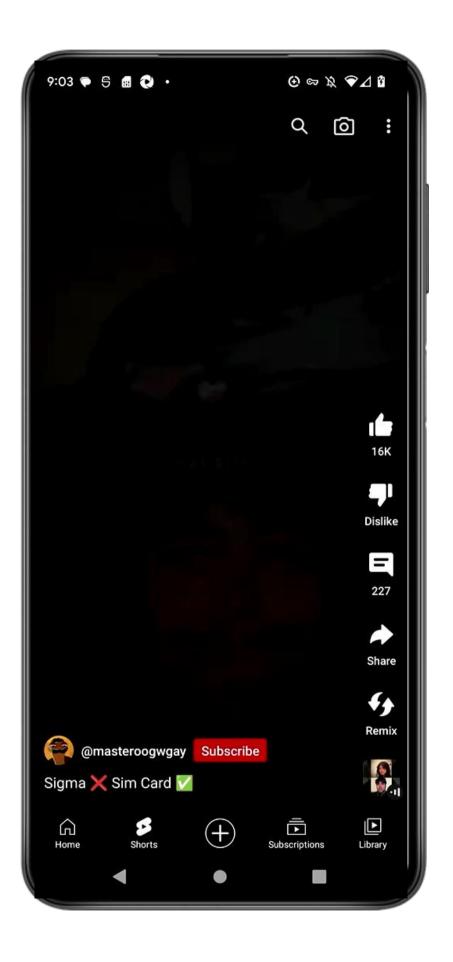
How do users evaluate this quality?

Challenges

User-generated content \rightarrow no reference « by design »

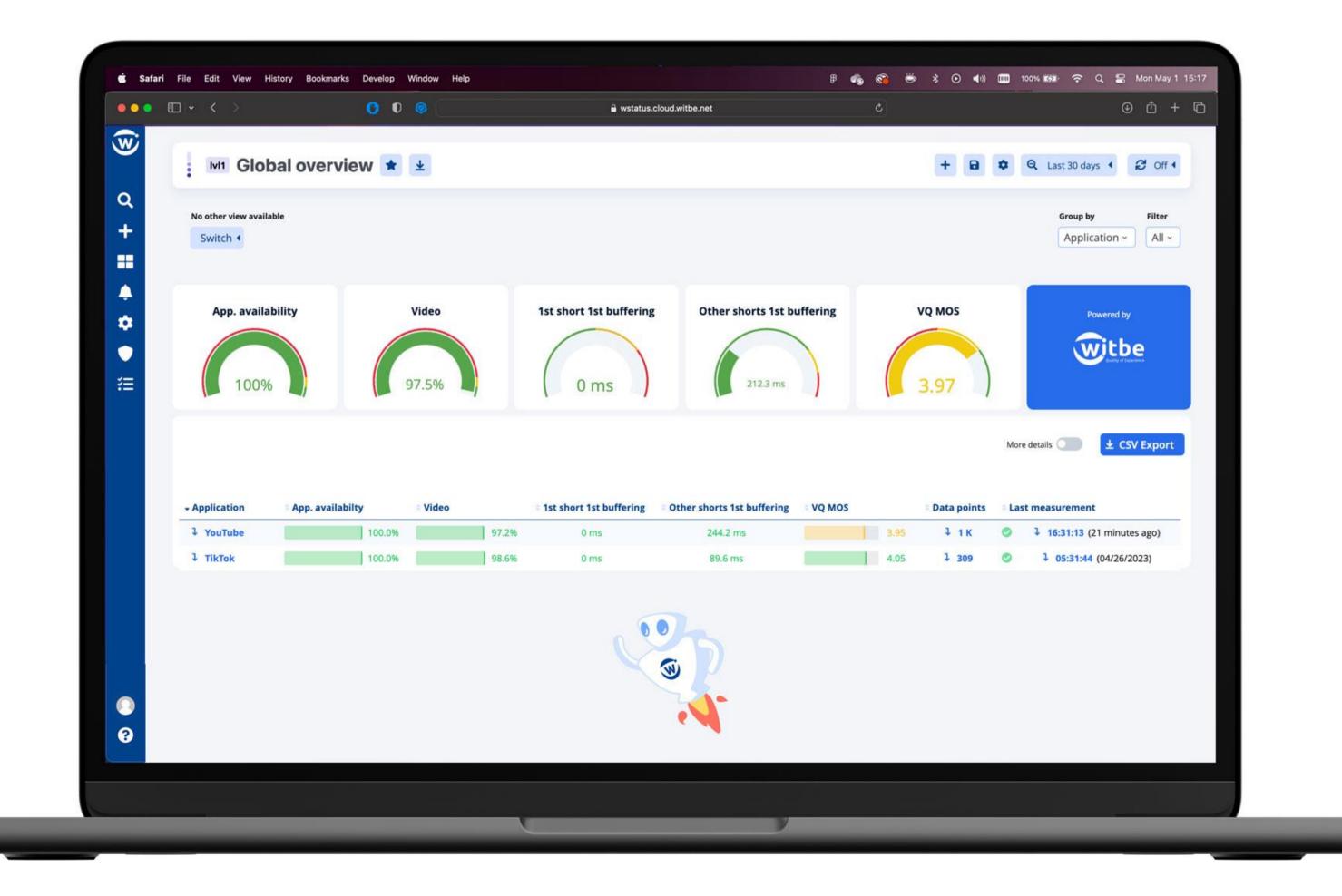
A lot of in-app optimizations thanks to smart developers and Ops Engineers

- Prefetch
- On net, off net cache
- HTTP/2 and QUIC


Constantly changing, updating, and evolving: So far in 2023 alone, 14 TikTok releases on 5 iOS public releases!

• No way to emulate app behavior with accuracy

What if it were that simple?

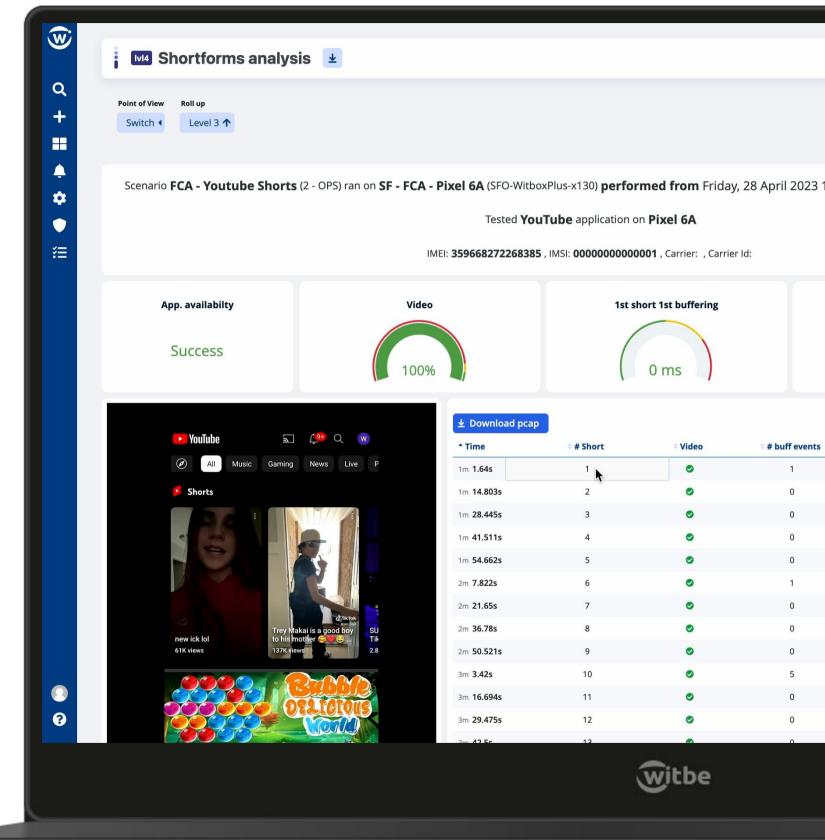


Initial buffering time for first reel : 100ms Video quality Blur : 5% No Rebuffering First frame 0ms Rebuffering

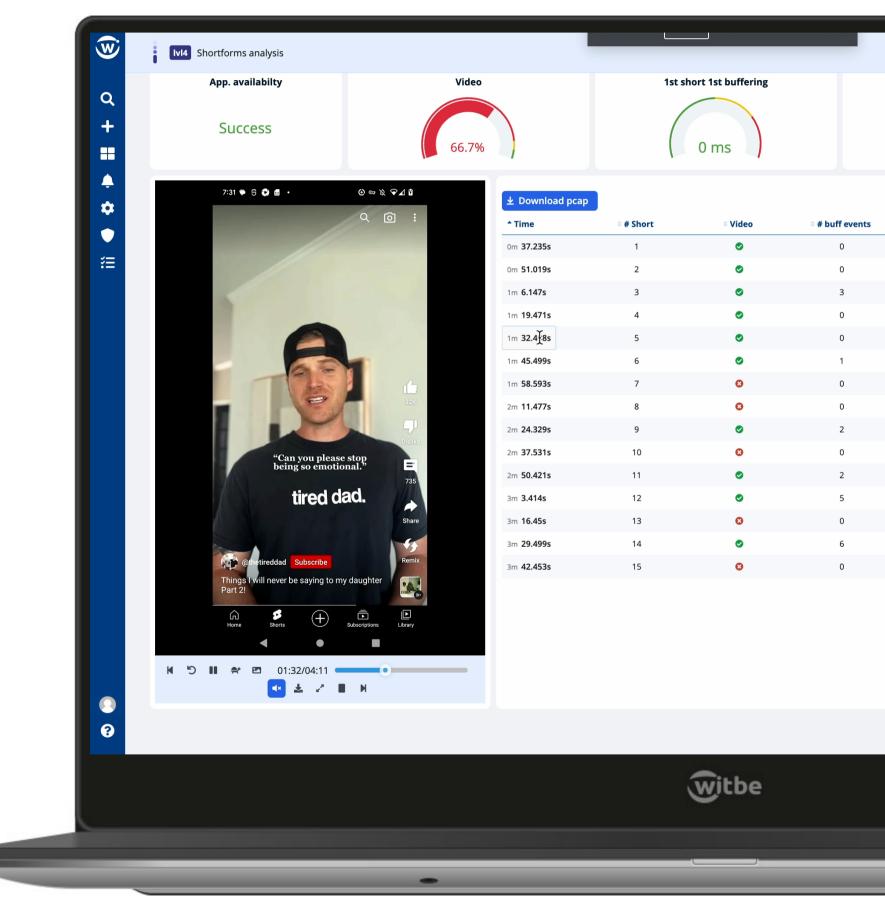
Rebuffering

Witbe Video MOS – Non-reference video quality assessment

MOS: 4.7 Block: 1% Blur: 0.4%


5

MOS: 1.9 Block: 12% Blur: 66%


Initial buffering time ?

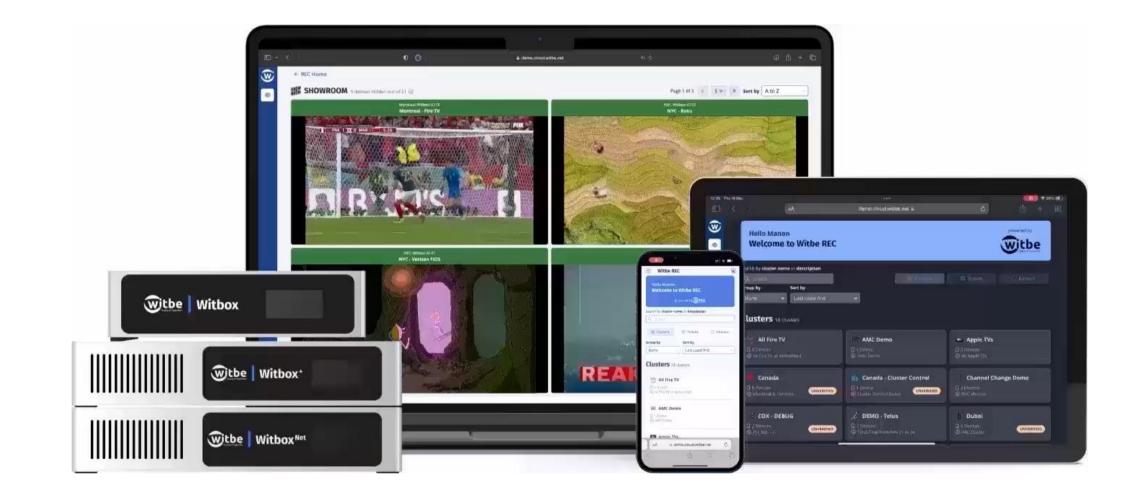
							+ 8 *
							☑ See device in REC
3 13:00:0	3 to Friday, 28 A	April 2023 13	:04:43				Powered by
o	ther shorts 1st buffe	ering					VQ MOS
Shor	tfoms ~	• Rebuffering	+ MOS	+ Feed	lback		details 📃 生 CSV Export
		• Rebuffering -3.99 s	≑ MOS 1.3	÷ Feed	lback		details L CSV Export
	+ First buffering						
	First buffering5.52 s	-3.99 s	1.3	×	1	Loop	N/A
	 First buffering 5.52 s 106.00 ms 	-3.99 s -106.00 ms	1.3 3.8	××	↑ ↑	Loop	N/A N/A
	 First buffering 5.52 s 106.00 ms 0 ms 	-3.99 s -106.00 ms 0 ms	1.3 3.8 3.1	× × ×	↑ ↑ ↑	Loop	N/A N/A N/A
	 First buffering 5.52 s 106.00 ms 0 ms 0 ms 	-3.99 s -106.00 ms 0 ms 0 ms	1.3 3.8 3.1 4.2	× × × × × ×	↑ ↑ ↑	Loop	N/A N/A N/A
	 First buffering 5.52 s 106.00 ms 0 ms 	-3.99 s -106.00 ms 0 ms 0 ms 0 ms	1.3 3.8 3.1 4.2 4.5	× × × × × × ×	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$	Loop	N/A N/A N/A N/A
	 First buffering 5.52 s 106.00 ms 0 ms 0 ms 0 ms 0 ms 	-3.99 s -106.00 ms 0 ms 0 ms 0 ms 1.87 s	1.3 3.8 3.1 4.2 4.5 1.6	× × × × × × × × × ×	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$	Loop V V V V V V	N/A N/A N/A N/A N/A
	 First buffering 5.52 s 106.00 ms 0 ms 	-3.99 s -106.00 ms 0 ms 0 ms 1.87 s 0 ms 0 ms 0 ms 0 ms	1.3 3.8 3.1 4.2 4.5 1.6 1.2 4.5 4.5	× × × × × × × × × ×	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$	Loop	N/A N/A N/A N/A N/A N/A
	 First buffering 5.52 s 106.00 ms 0 ms 	-3.99 s -106.00 ms 0 ms 0 ms 1.87 s 0 ms 0 ms	1.3 3.8 3.1 4.2 4.5 1.6 1.2 4.5	× × × × × × × × × ×	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$		N/A
	 First buffering 5.52 s 106.00 ms 0 ms 	-3.99 s -106.00 ms 0 ms 0 ms 1.87 s 0 ms 0 ms 0 ms 0 ms	1.3 3.8 3.1 4.2 4.5 1.6 1.2 4.5 4.5 1.2 4.4	× × × × × × × × × × × × × × ×	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$		N/A
	 First buffering 5.52 s 106.00 ms 0 ms 10 ms 10 ms 10 ms 	-3.99 s -106.00 ms 0 ms 0 ms 0 ms 1.87 s 0 ms 0 ms 0 ms 3.06 s	1.3 3.8 3.1 4.2 4.5 1.6 1.2 4.5 4.5 1.2	x x x x x x x x x x x x x x x x x x x	$\uparrow \uparrow $		N/A N/A

But also

Observations VQ MOS joint joint Shortforms Nor control Image: Shortforms Nor control					From	2023	-04-28	8 17:03:38 to 2023-04-28 17:03:38
● First buffering ● Rebuffering ● MOS ● Feedback Loop 0 ms 0 ms 4.6 × ↑ ✓ N/A 0 ms 0 ms 1.3 × ↑ ✓ N/A 90.00 ms 5.63 s 1.7 × ↑ ✓ N/A 90.00 ms 5.63 s 1.7 × ↑ ✓ N/A 0 ms 0 ms 4.9 × ↑ ✓ N/A 0 ms 0 ms 4.6 × ↑ ✓ N/A 0 ms 0 ms 4.6 × ↑ ✓ N/A 92.00 ms 6.88 s 1.1 × ↑ ✓ N/A 92.00 ms 6.88 s 1.1 × ↑ ✓ N/A 96.00 ms 6.82 s 1.3 × ↑ ✓ N/A 96.00 ms 6.25 s 1.3 × ↑ ✓ N/A 91.00 ms 5.24 s 1.2 × ↑ ✓ N/A 91.00 ms 5.40 s 1.3 <t< th=""><th>Othe</th><th></th><th>ring</th><th></th><th></th><th></th><th></th><th>2.34</th></t<>	Othe		ring					2.34
0 ms 0 ms 4.6 × ↑ ✓ N/A 0 ms 0 ms 1.3 × ↑ ✓ N/A 90.00 ms 5.63 s 1.7 × ↑ ✓ N/A 0 ms 0 ms 4.9 × ↑ ✓ N/A 0 ms 0 ms 4.9 × ↑ ✓ N/A 0 ms 0 ms 4.6 × ↑ ✓ N/A 92.00 ms 6.88 s 1.1 × ↑ ✓ N/A 92.00 ms 6.88 s 1.1 × ↑ ✓ N/A 92.00 ms 6.88 s 1.1 × ↑ ✓ N/A 92.00 ms 6.88 s 1.1 × ↑ ✓ N/A 92.00 ms 6.82 s 1.3 × ↑ ✓ N/A 96.00 ms 6.82 s 1.3 × ↑ ✓ N/A 91.00 ms 5.24 s 1.2 × ↑ ✓ N/A 91.00 ms 5.24 s	Shortfo	oms ~					More	details 📃 生 CSV Export
OmsOms1.3XIVN/A90.00 ms5.63 s1.7XIVN/AOmsOms4.9XIVN/AOmsOms4.6XIVN/A92.00 ms6.88 s1.1XIVN/A6.87 s-6.87 sXIVN/A7.29 s-7.29 sXIVN/A96.00 ms6.82 s1.3XIVN/A6.53 s-6.53 sI.3XIVN/A107.00 ms6.25 s1.3XIVN/A91.00 ms5.24 s1.2XIVN/A6.40 s-6.40 sI.3XIVN/A372.00 ms4.21 s1.3XIVN/A		• First buffering	• Rebuffering	≑ MOS	+ Fee	dback	Loop	
90.00 ms5.63 s1.7X \uparrow \checkmark N/A0 ms0 ms4.9X \uparrow \checkmark N/A0 ms0 ms4.6X \uparrow \checkmark N/A92.00 ms6.88 s1.1X \uparrow \checkmark N/A6.87 s-6.87 sX \uparrow \checkmark N/A7.29 s-7.29 sX \uparrow \checkmark N/A96.00 ms6.82 s1.3X \uparrow \checkmark N/A6.53 s-6.53 s-6.53 s \uparrow \checkmark N/A107.00 ms6.25 s1.3X \uparrow \checkmark N/A91.00 ms5.24 s1.2X \uparrow \checkmark N/A372.00 ms4.21 s1.3X \uparrow \checkmark N/A		0 ms	0 ms	4.6	×	1	~	N/A
O msA.9XTN/AO msO msA.6XTN/A92.00 ms6.88 s1.1XTN/A6.87 s-6.87 sXTVN/A7.29 s-7.29 sXTVN/A96.00 ms6.82 s1.3XTN/A6.53 s-6.53 s1.3XTN/A107.00 ms6.25 s1.3XTN/A91.00 ms5.24 s1.2XTN/A6.40 s-6.40 s-6.40 sXTN/A372.00 ms4.21 s1.3XTN/A		0 ms	0 ms	1.3	×	1	~	N/A
0 ms 4.6 X 1 X 1 N/A 92.00 ms 6.88 s 1.1 X 1 X N/A 6.87 s -6.87 s X 1 X 1 X N/A 6.87 s -6.87 s X 1 X 1 X N/A 7.29 s -7.29 s -7.29 s X 1 X N/A 96.00 ms 6.82 s 1.3 X 1 X N/A 6.53 s -6.53 s 1.3 X 1 X N/A 91.00 ms 5.24 s 1.3 X 1 X N/A 6.40 s -6.40 s -6.40 s 1.3 X 1 X N/A 372.00 ms 4.21 s 1.3 X 1 X N/A		90.00 ms	5.63 s	1.7	×	1	~	N/A
92.00 ms 6.88 s 1.1 X I N/A 6.87 s -6.87 s X I V N/A 7.29 s -7.29 s X I V N/A 96.00 ms 6.82 s 1.3 X I V N/A 96.00 ms 6.82 s 1.3 X I V N/A 107.00 ms 6.25 s 1.3 X I V N/A 91.00 ms 5.24 s 1.2 X I V N/A 6.40 s -6.40 s -6.40 s I I V N/A 372.00 ms 4.21 s 1.3 X I V N/A		0 ms	0 ms	4.9	×	1	~	N/A
6.87 s -6.87 s × <t< th=""><th></th><th>0 ms</th><th>0 ms</th><th>4.6</th><th>×</th><th>1</th><th>~</th><th>N/A</th></t<>		0 ms	0 ms	4.6	×	1	~	N/A
7.29 s -7.29 s × <t< th=""><th></th><th>92.00 ms</th><th>6.88 s</th><th>1.1</th><th>×</th><th>1</th><th>~</th><th>N/A</th></t<>		92.00 ms	6.88 s	1.1	×	1	~	N/A
96.00 ms 6.82 s 1.3 X I N/A 6.53 s -6.53 s X I I N/A 107.00 ms 6.25 s 1.3 X I I N/A 91.00 ms 5.24 s 1.2 X I I N/A 6.40 s -6.40 s X I I N/A 372.00 ms 4.21 s 1.3 X I I N/A		6.87 s	-6.87 s		×	1	~	N/A
6.53 s -6.53 s × ↑ × N/A 107.00 ms 6.25 s 1.3 × ↑ × N/A 91.00 ms 5.24 s 1.2 × ↑ × N/A 6.40 s -6.40 s × ↑ × N/A 372.00 ms 4.21 s 1.3 × ↑ × N/A		7.29 s	-7.29 s		×	1	~	N/A
107.00 ms 6.25 s 1.3 X Y N/A 91.00 ms 5.24 s 1.2 X Y N/A 6.40 s -6.40 s X Y N/A 372.00 ms 4.21 s 1.3 X Y N/A		96.00 ms	6.82 s	1.3	×	1	~	N/A
91.00 ms 5.24 s 1.2 X Y N/A 6.40 s -6.40 s X Y X N/A 372.00 ms 4.21 s 1.3 X Y N/A		6.53 s	-6.53 s		×	1	~	N/A
6.40 s ★ ★ ✓ N/A 372.00 ms 4.21 s 1.3 ★ ★ ✓ N/A		107.00 ms	6.25 s	1.3	×	1	~	N/A
372.00 ms 4.21 s 1.3 🗙 🔨 🗸 N/A		91.00 ms	5.24 s	1.2	×	1	~	N/A
		6.40 s	-6.40 s		×	1	~	N/A
6.45 s -6.45 s x r √ √ N/A		372.00 ms	4.21 s	1.3	×	1	~	N/A
		6.45 s	-6.45 s		×	1	~	N/A

Video vs. Network Analysis

Point of View Roll up		Application City User journey
Switch Level 1		Witbe-is-cool - All - All -
4:30 S O ⊡ Q → X LTE ⊿ D tive Following For You Q	Network performances RSRP -85.50 -86.00 -86.50 -86.50 -87.00 -87.50 -87.50 -88.00 -88.00	
	-88.50 -88.50 00m 00m05s 00m10s 00m15s 00m20s 00m25s 00m30s 00m35s 00m40s 00m45s 00m50s 00m55s 01 RSRP	m 01m05s 01m10s 01m15s 01m20s 01m25s 01m30s 01m35s 01m40s 01m45s
GET IN 22	Video Analysis Video MOS	m 01m05s 01m10s 01m15s 01m20s 01m25s 01m30s 01m35s 01m40s 01m45s
o CapCut I Try this template squidgymd12 ListenThere are not many things I wouldn't do for an R8. #CapCut #audi #18 #fyp ♫ original sound - squidg Mome Prinds ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++		6s776ms 7s400ms
Image: Non-State State S		
8		
	Witbe	



About Witbe

Automated testing and proactive monitoring technology for video services

Test on the same real, physical devices that customers are using

Launched short-form video testing technology in 2022

Any questions?

Thank you!