
Fraunhofer FOKUS Institute for Open Communication Systems

—
Practical Tutorial: DASH based media streaming with dash.js

Daniel Silhavy

©
 Philipp Plum

/ Fraunhofer FO
KU

S

About me
Tutorial: dash.js

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 2

§ Daniel Silhavy (Fraunhofer FOKUS)
§ Area of expertise: Adaptive Media Streaming, Video Encoding, Media Player Development,

Standardization, 5G Media Streaming
§ Related Open-Source Projects:

§ Lead Developer of the dash.js project
§ 5G-MAG Reference Tools Development Team Coordinator
§ Joint Conformance Project (JCCP) Development Coordinator

§ Contact
§ Email: daniel.silhavy@fokus.fraunhofer.de
§ LinkedIn: https://www.linkedin.com/feed/

mailto:daniel.silhavy@fokus.fraunhofer.de
https://www.linkedin.com/feed/

Agenda
Tutorial – dash.js

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 3

Foundations

• ABR Streaming
• MSE and EME based

playback
• MPEG-DASH

dash.js

• Overview
• DRM
• Features

• MPD Patching
• Content Steering
• CMCD
• CMSD
• CMAF Low Latency
• Timing Problems

• Multiperiod and Gap
Handling

• Testing

Stream Debugging

• Segment Inspection
• DASH Validator
• DASH-IF Livesim
• ABR Testbed

How did I setup this tutorial?
Workshop – dash.js

• Questions in between are always welcome
• I will show demos in between the different Chapters
• Some chapters will close with a slide on “Recommendations /

Best practices / Hints”
• Slides will be shared later

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 4

Chapter 01

—
ABR Streaming

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 5

Quality Selection
Adaptive Bitrate Streaming

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 6

Encoding ladder
Adaptive Bitrate Streaming

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 7 Sports

Resolution Bitrate kbit/s Frame Rate

400x224 417 25

640x360 1219 25

768x432 2189 25

1280x720 3375 50

1920x1080 5825 50

1920x1080 8816 50

Dynamic quality switching
Adaptive Bitrate Streaming

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 8

640 x 360 @365 kbit/s

416 x 234 @145 kbit/s

Local WIFI: High bandwidth, fast
startup phase

Mobile connection:
Low bandwidth,
quality is decreased

Mobile connection:
Medium bandwidth,
quality is increased

Mobile connection: High
bandwidth, quality is increased

960 x 540 @2000 kbit/s

768 x 432 @1100 kbit/s

1920 x 1080 @6000 kbit/s

1280 x 720 @3000 kbit/s

Hi
gh

 q
ua

lit
y

/
Hi

gh
 b

itr
at

e
M

ed
iu

m

qu
al

ity
 /

M
ed

iu
m

bi

tr
at

e

Lo
w

 q
ua

lit
y/

Lo

w
 b

itr
at

e
Single segment with a
duration of 2-4 seconds

Media Streaming Workflow
Adaptive Bitrate Streaming

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 9

License Server Content Server / CDN

App Server

get app

HTTP GET

ge
t l

ice
ns

e
DRM

platform
comm.

media
decrypt.

live VoD

Tools

DRM-enabled Terminal

Player

Transcoder / Packager

We focus on this component today

Chapter 02

—
MSE and EME based playback

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 10

Types of browser-based playback
Web based players – Web APIs

• Type 1

• Direct playback via the HTML5 video element
• <video id="video" controls width=1280 height=720 src=”video.mpd"></video>

• No control over the playback and the ABR behavior of the player, more or less a
blackbox

• Examples: HbbTV, Samsung AVPlay, Safari HLS
• Type 2
• HTML5 video element but ABR API to control ABR logic of the player
• Examples: ?

• Type 3
• HTML5 video element + Media Source Extensions + Encrypted Media Extensions
• Full control over the playback but complete player logic needs to be implemented
• Examples: dash.js, hls.js, Shaka Player

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 11

W3C Media Source Extensions
Web based players – Web APIs

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 12

• Enables JavaScript clients to append media
segments to the HTML5 Video Element

• Defines a MediaSource object that can serve as a
source of media data for an HTMLMediaElement.

• MediaSource objects have one or more
SourceBuffer objects

• Applications append data segments to the
SourceBuffer objects, and can adapt the quality
of appended data based on system performance
and other factors

• https://w3c.github.io/media-source/

https://w3c.github.io/media-source/

W3C Media Source Extensions - Support
Web based players – Web APIs

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 13

§ Source: https://caniuse.com/?search=media%20source%20extensions

https://caniuse.com/?search=media%20source%20extensions

W3C Encrypted Media Extensions
Web based players – Web APIs

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 14

JavaScript interface between DRM License
Server and CDM

• Minor differences across browsers
• Different versions of the EME over the

years. Some embedded devices only
support outdated EME versions.

• Secure origin and transport / mixed
content à requires https at least in
Chrome

• https://www.w3.org/TR/encrypted-
media/

https://www.w3.org/TR/encrypted-media/
https://www.w3.org/TR/encrypted-media/

W3C Encrypted Media Extensions - Support
Web based players – Web APIs

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 15

§ Source: https://caniuse.com/?search=encrypted%20media%20extensions

https://caniuse.com/?search=encrypted%20media%20extensions

Chapter 03

—
Adaptive Streaming Formats – MPEG-DASH

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 16

Live and VoD format usage in 2022
Adaptive Streaming Formats

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 17

§ Source: https://bitmovin.com/wp-content/uploads/2022/12/bitmovin-6th-video-developer-report-2022-2023.pdf

https://bitmovin.com/wp-content/uploads/2022/12/bitmovin-6th-video-developer-report-2022-2023.pdf

MPEG-DASH
Adaptive Streaming Formats – MPEG-DASH

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 18

Dynamic Adaptive Streaming over HTTP (DASH) - ISO/IEC 23009
• Part 1: Media presentation description and segment formats
• Part 2: Conformance and reference software
• Part 3: Implementation guidelines
• Part 4: Segment encryption and authentication
• Part 5: Server and network assisted DASH (SAND)
• Part 6: DASH with Server Push and Web Sockets

• Part 1 is freely available here: https://standards.iso.org/ittf/PubliclyAvailableStandards/c083314_ISO_IEC%2023009-
1_2022(en).zip

• Different profiles: DASH-IF, DVB-DASH, HbbTV, CTA-WAVE etc.

• E.g. "urn:mpeg:dash:profile:isoff-live:2011,urn:com:dashif:dash264"

https://standards.iso.org/ittf/PubliclyAvailableStandards/c083314_ISO_IEC%2023009-1_2022(en).zip
https://standards.iso.org/ittf/PubliclyAvailableStandards/c083314_ISO_IEC%2023009-1_2022(en).zip

DASH-IF Interoperability Guidelines
Adaptive Streaming Formats – MPEG-DASH

• Goal: Create a baseline recommendation that everyone could
use to build interoperable products and services without
painful integration

• With version 5 of DASH-IF Interoperability Guidelines, DASH-
IF decided to introduce different parts that each address
specific aspects of DASH-based service delivery. Each part is
developed and updated within its own timescale

• Download here: https://dashif.org/guidelines/iop-v5/
• Also very useful: https://dashif-

documents.azurewebsites.net/Guidelines-
TimingModel/master/Guidelines-TimingModel.html

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 19

https://dashif.org/guidelines/iop-v5/
https://dashif-documents.azurewebsites.net/Guidelines-TimingModel/master/Guidelines-TimingModel.html
https://dashif-documents.azurewebsites.net/Guidelines-TimingModel/master/Guidelines-TimingModel.html
https://dashif-documents.azurewebsites.net/Guidelines-TimingModel/master/Guidelines-TimingModel.html

Chapter 04

—
dash.js – Overview

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 20

Overview & Status
dash.js – Overview

• dash.js is the official reference player by the DASH Industry Forum for
playback of MPEG-DASH content

• Maintained by Fraunhofer FOKUS, community driven development

• Open-source project on Github - https://github.com/Dash-Industry-
Forum/dash.js/ , last released version 4.7.0

• Written in JavaScript uses the W3C
Media Source Extensions (MSE) and Encrypted Media Extensions
(EME)

• Works on all MSE and EME based platforms including Desktop
browsers, smartphones, SmartTVs, Set-Top Boxes.

• Various features including flexible ABR logic, multiperiod, DRM
support, MPD patching, Gap handling, CMCD, CMAF low latency
support, support for various subtitle formats (TTML, IMSC1, WebVTT)
and many more.

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 21

https://reference.dashif.org/dash.js/nightly/samples/dash-if-reference-
player/index.html

https://github.com/Dash-Industry-Forum/dash.js/
https://github.com/Dash-Industry-Forum/dash.js/
https://reference.dashif.org/dash.js/nightly/samples/dash-if-reference-player/index.html
https://reference.dashif.org/dash.js/nightly/samples/dash-if-reference-player/index.html

Application areas
dash.js – Overview

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 22

Research

• Used for research purposes,
for instance to test and
compare new ABR
algorithms (Twitch
challenge)

• Evaluate new features such
as MPD patching and CMCD

Industry

• Used in production for
instance by BBC, Deutsche
Telekom, Orange

• Used to compare behavior of
commercial players against
reference player

Reference platform

• Implements latest features from
DASH-IF IOP guidelines and
ISO/IEC specification.

• Used by other organizations in
their reference implementations
§ CTA-WAVE
§ DVB-I
§ HbbTV
§ 5G-MAG

Numbers
dash.js – Overview

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 23

51 releases
> 4.700 stars
258 watchers
> 1.600 forks
Used by over 2.300
other projects
172 contributors

96 dependents

50.000 – 80.000
downloads a week

2.090.885 downloads in
2022

• Different DASH-IF calls
every week

• Monthly developer calls
• Discussions on

• Slack (1708
members)

• Github
• Google Groups

(1223 members)

Important links
dash.js - Overview

• Github project: https://github.com/Dash-Industry-Forum/dash.js
• Reference client: https://reference.dashif.org/dash.js/nightly/samples/dash-if-reference-player/index.html
• Samples: https://reference.dashif.org/dash.js/nightly/samples/index.html

• Wiki: https://github.com/Dash-Industry-Forum/dash.js/wiki
• API documentation: http://cdn.dashjs.org/latest/jsdoc/module-MediaPlayer.html
• Slack Channel: https://dashif-slack.azurewebsites.net/
• Google Groups: https://groups.google.com/g/dashjs
• How to contribute: https://github.com/Dash-Industry-Forum/dash.js/blob/development/CONTRIBUTING.md

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 24

https://github.com/Dash-Industry-Forum/dash.js
https://reference.dashif.org/dash.js/nightly/samples/dash-if-reference-player/index.html
https://reference.dashif.org/dash.js/nightly/samples/index.html
https://github.com/Dash-Industry-Forum/dash.js/wiki
http://cdn.dashjs.org/latest/jsdoc/module-MediaPlayer.html
https://dashif-slack.azurewebsites.net/
https://groups.google.com/g/dashjs
https://github.com/Dash-Industry-Forum/dash.js/blob/development/CONTRIBUTING.md

Try it out yourself:
http://reference.dashif.org/dash.js/nightly/samp
les/getting-started/manual-load-single-
video.html

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 25

Hands-On – Getting started
dash.js – Overview

http://reference.dashif.org/dash.js/nightly/samples/getting-started/manual-load-single-video.html
http://reference.dashif.org/dash.js/nightly/samples/getting-started/manual-load-single-video.html
http://reference.dashif.org/dash.js/nightly/samples/getting-started/manual-load-single-video.html

Chapter 05

—
dash.js Features

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 26

Content Steering
dash.js Features

• Content steering describes a deterministic
capability for a content distributor to switch the
content source that a player uses either at start-up
or midstream by means of a remote steering
service

• Introduced in the 2nd edition of the HLS
specification, DASH-IF has taken the task to define
a corresponding DASH specification

• Adds new <ContentSteering> element to the MPD
• <BaseURL> elements contain „serviceLocation“

attribute that can be used as an identifier
• Steering Server returns a „PATHWAY_PRIORITY“ list
• New elements can be synthesized with

„PATHWAY_CLONES“

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 27

§ Try it out yourself (requires a steering server): https://reference.dashif.org/dash.js/nightly/samples/advanced/content-steering.html

https://reference.dashif.org/dash.js/nightly/samples/advanced/content-steering.html

Try it out yourself:
https://reference.dashif.org/dash.js/nightly/sam
ples/advanced/content-steering.html

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 28

dash.js demo
Content Steering

https://reference.dashif.org/dash.js/nightly/samples/advanced/content-steering.html
https://reference.dashif.org/dash.js/nightly/samples/advanced/content-steering.html

Preload
dash.js Features

• Some platforms like HbbTV terminals have only a
single decoder. It is not possible to initialize MSE
based playback while the broadcast content is
rendered

• To support Broadcast-Broadband ad insertion on
HbbTV terminals segments should be prebuffered
for a seamless transition between main content
(broadcast) and ad content (broadband)

• Solution: Virtual buffer that is emptied once MSE is
attached to video element

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 29

§ Try it out yourself: https://reference.dashif.org/dash.js/nightly/samples/advanced/preload.html

https://reference.dashif.org/dash.js/nightly/samples/advanced/preload.html

Try it out yourself:
https://reference.dashif.org/dash.js/nightly/sam
ples/advanced/preload.html

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 30

dash.js demo
Preload

https://reference.dashif.org/dash.js/nightly/samples/advanced/preload.html
https://reference.dashif.org/dash.js/nightly/samples/advanced/preload.html

MPD Patching
dash.js Features

• Added in 5th edition of MPEG-DASH
• Although some parts of the MPD can

change between two consecutive MPD
updates, most parts of it remain
unchanged.

• Idea: Provide only mandatory MPD
information to the client.

• Updates to the MPD are provided
through MPD patches. MPD patches only
contain new information, such as
additional media segment

• Allows addition, removal and change of
information in the manifest

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 31

Reduced traffic

Reduced parsing time on the
client side

MPD Patching

Seg 1 Seg 2 Seg 3 Seg 4

”Standard” MPD update

Seg 1 Seg 2 Seg 3 Seg 1
Seg 2

Seg 3
Seg 4

Result

Seg 1 Seg 2 Seg 3 Seg 4

Common Media Client Data
dash.js Features

• CTA-5004 - Common Media Client Data (CMCD) defines data
that is collected by the media player and is sent as a custom
HTTP header or query parameter alongside each object
request to a CDN

• Enables

• Log analysis
• Quality of service monitoring
• Prioritization of clients
• Cross correlation of performance problems with specific

devices and platforms
• Improved edge caching

• dash.js
• allows whitelisting of the parameters
• Dispatches all the CMCD data via events to be used for

custom metric reporting
• Try it out: https://tinyurl.com/cmcd-dashjs

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 32

CMCD parameters
• bl: Buffer length

• br: Encoded bitrate

• bs: Buffer starvation

• cid: Content ID
• d: Object duration

• dl: Deadline

• mtp: Measured throughput

• nor: Next object request

• nrr: Next range request
• ot: Object type

• pr: Playback rate

• rtp: Requested maximum throughput

• sf: Streaming format

• sid: Session ID
• st: Stream Type

• su: Startup

• tb: top bitrate

https://tinyurl.com/cmcd-dashjs

Try it out yourself:
https://reference.dashif.org/dash.js/nightly/sam
ples/advanced/cmcd.html

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 33

dash.js demo
Common Media Client Data

https://reference.dashif.org/dash.js/nightly/samples/advanced/cmcd.html
https://reference.dashif.org/dash.js/nightly/samples/advanced/cmcd.html

Common Media Server Data
dash.js Features

• CTA-5006 – Common Media Server Data defines structure
for data transmitted in the response to a request from a
media player for an HTTP adaptive streaming media object.

• The response usually originates at an origin server and is
then propagated through a series of intermediaries to the
player.

• Examples:

• Edge servers can provide information about throughput or
the cache status of objects.

• Coordinate multiple clients that are competing for the
available bandwidth

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 34

CMSD parameters
• at: Availability Time

• du:Duress

• br: Encoded Bitrate

• etp: Estimated Throughput
• ht: Held time

• n: Intermediary identifier

• mb: Max suggested bitrate

• nor: Next object response

• nrr: Next range response
• d: Object duration

• ot: Object type

• rd: Response delay

• rtt: Round trip time

• su: Startup
• st: Stream Type

• sf: Streaming format

• v: Version

Try it out yourself:
https://shorturl.at/jsxW7

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 35

dash.js demo
Common Media Server Data

https://shorturl.at/jsxW7

Low Latency Streaming
dash.js Features

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 36

• Key concepts:
• HTTP/1.1 chunked transfer encoding (CTE)
• CMAF chunks
• Adjustment of playback rate to maintain

consistent live edge
• Specified in:
• Section 10.20 of the DVB-

DASHv.1.3.1 spec from February 2020
• DASH-IF IOP v.5 – Low Latency Modes for DASH

in March 2020
• Related DASH specific attributes

• availabilityTimeOffset
• availabilityTimeComplete
• ServiceDescription
• UTCTiming
• ProducerReferenceTime

https://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.03.01_60/ts_103285v010301p.pdf
https://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.03.01_60/ts_103285v010301p.pdf
https://dashif.org/docs/CR-Low-Latency-Live-r8.pdf

Try it out yourself:
https://reference.dashif.org/dash.js/nightly/sam
ples/low-latency/testplayer/testplayer.html

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 37

dash.js demo
Low Latency Streaming

https://reference.dashif.org/dash.js/nightly/samples/low-latency/testplayer/testplayer.html
https://reference.dashif.org/dash.js/nightly/samples/low-latency/testplayer/testplayer.html

UTC Timing Synchronization
dash.js Features

• During playback of dynamic
presentations, a wall clock is
used as the timing reference
for DASH client decisions.

• This is a synchronized clock
shared by the DASH client and
service

• The reference clock is defined
in the <UTCTiming> element in
the MPD

• dash.js 4.x dynamically adjusts
the interval between
synchronization requests
depending on the drift
between two consecutive
attempts.

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 38

UTC Timing Synchronization in dash.js

Parameter Description Value

background
Attempts

Number of synchronization attempts to perform in the background after
an initial synchronization request has been done

2

timeBetweenSy
nc
Attempts

The time in seconds between two consecutive sync attempts.
Note: This value is used as an initial starting value and is adjusted during
playback based on the drift between two consecutive synchronization
attempts.

30

maximumTime
BetweenSync
Attempts

The maximum time in seconds between two consecutive sync attempts. 600

minimumTime
BetweenSync
Attempts

The minimum time in seconds between two consecutive sync attempts 2

timeBetweenSy
ncAttemptsAdju
stmentFactor

The factor used to multiply or divide the timeBetweenSyncAttempts
parameter after a sync

2

maximum
allowedDrift

The maximum allowed drift specified in milliseconds between two
consecutive synchronization attempts

100

Recovering from MSE errors
dash.js Features

• A decode error for a specific segment should not lead
to a complete shutdown of the player

• Idea: Reset MSE and resume playback

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 39

Error recovering in dash.js

Parameter Description Default

recoverAttempts.
mediaErrorDecode

Defines the
maximum number
of recover attempts
for decode errors

5

SourceBuffer throws
MEDIA_ERR_DECODE

Blacklist segment
that caused the

error
Reset MSE

Resume from
previous play

position

Ignore erroneous
segment and

jump resulting
gap

Segment Alignment
Advanced Topics

• Misalignments are mainly a result of segment durations that do
not match sampling rate and fixed number of audio frames per
packet size.

• Unaligned media segments can lead to

• Large manifest files
• Player performance problems (long parsing duration)

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 40

Aligned segments: 25fps with AAC 48kHZ

Segment
duration in sec

Video frames Audio Packets (1024
frames per packet)

1.92 48 90

3.84 96 180

6.4 160 300
Repeating pattern in <SegmentTimeline> for the audio AdaptationSet

See https://websites.fraunhofer.de/video-dev/why-and-how-to-align-media-segments-for-abr-streaming/ for details

https://websites.fraunhofer.de/video-dev/why-and-how-to-align-media-segments-for-abr-streaming/

Excursus Segment Alignment: The <Patterns> tag
dash.js Features

• Amazon Prime uses a <Pattern> tag to account for
the repeating pattern of segment durations

• Not specification compliant i.e. not part of
ISO/IEC 23009-1 or the DASH-IF IOP guidelines

• More details:
https://websites.fraunhofer.de/video-dev/to-
understand-is-to-perceive-patterns/

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 41

https://websites.fraunhofer.de/video-dev/to-understand-is-to-perceive-patterns/
https://websites.fraunhofer.de/video-dev/to-understand-is-to-perceive-patterns/

Timing Violations: Fallback with <SegmentTimeline>
dash.js Features

• In some cases, the media segments
signaled via <SegmentTimeline> are out
of the DVR window

• Violation of the DASH timing model and
related to a server-side problem.

• If application provider is aware of this a
workaround on the client side can be
used: Use last segment in
<SegmentTimeline> as “now” anchor

07.05.23

© Fraunhofer FOKUS – Workshop dash.js

Page 42

Segments out of DVR window

Seg 1 Seg 2 Seg 3

UTC now

TimeShiftBufferDepth

Live DelayEffective DVR window

Adjusted DVR window

Seg 1 Seg 2 Seg 3

UTC now

TimeShiftBufferDepth

Live DelayEffective DVR window

Adjusted anchor time. Use presentation end time of last
segment in <SegmentTimeline> as “now” anchor

TimeShiftBufferDepth

Adjusted Effective
DVR window

Live Delay

Timeline fallback

Parameter Description
calcFrom
Segment
Timeline

Enable calculation of the DVR
window for SegmentTimeline
manifests based on the entries in
<SegmentTimeline>

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 43

• Aligning the duration of the audio and video segments can reduce the
size of the manifest and save parsing time on the client-side

• Pay close attention to your CMAF fragment duration. A quality switch
on chunk level is currently not supported. Future work items:

• Resync Representations
• ARI track

• Always specify a <UTCTiming> element to synchronize the clocks
between client and encoder/packager

• Streaming in low latency mode is always a tradeoff between latency
and buffer.

• If you use preconditioned content, consider signaling
availabilityTimeOffset=“INF” for specific periods
• Example: https://reference.dashif.org/dash.js/nightly/samples/live-

streaming/availability-time-offset.html

Recommendations / Best practices / Hints
dash.js Features

https://reference.dashif.org/dash.js/nightly/samples/live-streaming/availability-time-offset.html
https://reference.dashif.org/dash.js/nightly/samples/live-streaming/availability-time-offset.html

Chapter 07

—
Digital Rights Management

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 44

DRM in the Media Streaming Stack
Digital Rights Management

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 45

Multi DRM

• Google Widevine
• Microsoft

Playready
• Apple Fairplay
• (Clearkey)
• Content

Protection
Information
Exchange Format
(CPIX)

Encryption

• Common
Encryption (CENC)

• CBCS
• CENC

Packaging

• Common Media
Application
Format (CMAF)

• Protection System
Specific Header
(pssh)

• Dynamic Adaptive
Streaming over
HTTP (DASH)

• HTTP Live
Streaming (HLS)

Playback

• Encrypted Media
Extensions (EME)

• dash.js & other
players

• Content
Decryption
Module (CDM)

• Trusted Execution
Environment
(TEE)

Different EME models in dash.js
Digital Rights Management

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 46

01.b
• Initial implementation of the

EME, implemented by Google
Chrome prior to version 36.

• This EME version is not-promised
based and uses outdated or
prefixed events like “needkey” or
“webkitneedkey

2014
• Implementation of EME APIs as of

the 3 Feb 2014 state of the
specification. Implemented by
Internet Explorer 11 (Windows
8.1)

2015
• Most recent EME implementation.

Latest changes in the EME
specification are added to this
model

• It supports the promised-based
EME function calls.

Some platforms require customized (e.g. custom-prefixed) EME implementations. Stepping
through the EME workflow helps identifying required changes.

DRM System Priority
Digital Rights Management

• In case multiple DRM systems
are supported on the target
platform priorities to the
systems can be assigned

• Example:
https://reference.dashif.org/da
sh.js/nightly/samples/drm/syst
em-priority.html

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 47

Widevine is tried before
Playready

https://reference.dashif.org/dash.js/nightly/samples/drm/system-priority.html
https://reference.dashif.org/dash.js/nightly/samples/drm/system-priority.html
https://reference.dashif.org/dash.js/nightly/samples/drm/system-priority.html

Key System String Priority
Digital Rights Management

• Initial EME call “requestMediaKeySystemAccess”
requires a key system string for which the access is
being requested

• Example Playready:

• “com.microsoft.playready.recommendation”
• Correct system string for Edge

• “com.microsoft.playready”:
• Fallback for legacy implementations

• „com.microsoft.playready.recommendation.3000“
• Forces HW DRM on Windows for video

• Additional information: https://github.com/Dash-
Industry-Forum/dash.js/issues/3852

• Example:
https://reference.dashif.org/dash.js/nightly/sample
s/drm/system-string-priority.html

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 48

https://github.com/Dash-Industry-Forum/dash.js/issues/3852
https://github.com/Dash-Industry-Forum/dash.js/issues/3852
https://reference.dashif.org/dash.js/nightly/samples/drm/system-string-priority.html
https://reference.dashif.org/dash.js/nightly/samples/drm/system-string-priority.html

Robustness levels
Digital Rights Management

Initial call to EME should contain a robustness level
that maps to a specific DRM security level:

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 49

EME
Level

Playready Widevine

1 2000 SW_SECURE_CRYPTO
(L3)

2 2000 SW_SECURE_DECODE
(L3)

3 2000 HW_SECURE_CRYPTO
(L2)

4 2000 HW_SECURE_DECODE
(L1)

5 3000 HW_SECURE_ALL (L1)

Excursus: Hardware DRM on mobile devices
Digital Rights Management

• Some devices successfully resolve the promise
returned requestMediaKeySystemAccess but fail to
create the MediaKeys afterwards.

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 50

Samsung
Galaxy S9
Android 9
Chrome 75

HTC OnePlus 5T
Android 8.1
Chrome 75

requestMediaKey
SystemAcess

keySystemAccess.
createMediaKeys

Tests performed in 2019

Additional settings
Digital Rights Management

• License server URLs via API and MPD <dashif:Laurl> element
• DRM specific headers: Add custom headers to your license request
• Define promise-based callback functions to modify license request and license response
• Preserve MediaKeys and MediaKeySessions during MediaPlayer lifetime to avoid new

license requests
• See DRM sample section and documentation:
• https://reference.dashif.org/dash.js/nightly/samples/index.html
• https://github.com/Dash-Industry-Forum/dash.js/wiki/Digital-Rights-Management-

(DRM)-and-license-acquisition

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 51

https://reference.dashif.org/dash.js/nightly/samples/index.html
https://github.com/Dash-Industry-Forum/dash.js/wiki/Digital-Rights-Management-(DRM)-and-license-acquisition
https://github.com/Dash-Industry-Forum/dash.js/wiki/Digital-Rights-Management-(DRM)-and-license-acquisition

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 52

• EME support requires the application to be hosted with https.
• Some platforms required customized (e.g. prefixed) EME

implementations.
• Old platforms might not support CBCS encryption for

Widevine and Playready, see
https://websites.fraunhofer.de/video-dev/is-this-the-end-of-
cenc-an-overview-of-drm-codec-support-in-2021/

• Make sure to use correct robustness level and key system
string when enforcing Hardware DRM

• Checking for Hardware DRM support might require multiple
calls to the EME

• Chrome does not support support HEVC with Widevine

Recommendations / Best practices / Hints
Digital Rights Management

https://websites.fraunhofer.de/video-dev/is-this-the-end-of-cenc-an-overview-of-drm-codec-support-in-2021/
https://websites.fraunhofer.de/video-dev/is-this-the-end-of-cenc-an-overview-of-drm-codec-support-in-2021/

Try it out yourself:
https://reference.dashif.org/dash.js/nightly/sam
ples/ -> DRM Section/Tab

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 53

dash.js demo
Digital Rights Management

https://reference.dashif.org/dash.js/nightly/samples/
https://reference.dashif.org/dash.js/nightly/samples/

Chapter 06

—
Multiperiod Playback and Gap Handling

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 54

Multiperiod Playback

• Multiperiod playback enables use cases
such as

• server-side ad-insertion
• transition between encrypted and non-

encrypted content
• A codec change e.g from H.264 to H.265

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 55

Main (encrypted) Main (encrypted) Ad1 Ad
Slate

Ad2

Period 1 Period 2 Period 3 Period 4 Period 5

Midroll multiperiod example

dash.js - Features
Multiperiod Playback

• dash.js 4.x supports
• Prebuffering of multiple upcoming periods

to maintain the specified buffer target
• Support for transition between encrypted

and non encrypted periods
• A DVR window overlapping multiple

periods. Seeking within the DVR window is
not limited to a single period anymore.

• Support for MSE v.2
SourceBuffer.changeType() to enable codec
changes without MSE reinitialization

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 56

Period 1 Period 2 Period 3

current time

dash.js 3.x DVR window

dash.js 4.x DVR window

MPD@timeShiftBufferDepth

Multiperiod DVR window

Main (encrypted) Main (encrypted) Ad1 Ad
Slate

Ad2

Period 1 Period 2 Period 3 Period 4 Period 5

Multiperiod prebuffering

dash.js 3.x prebuffering

current time

dash.js 4.x prebuffering

Gap Handling

• MSE implementations stall if the buffer is not
continuous.

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 57

Gaps in the media buffer

Seg 2 Seg 3

Media bufferGap

Seg 1

eptDelta & pdDelta

Seg 3 Seg 1 Seg 2

Period@start Period@end

@eptDelta > 0 @pdDelta < 0

• There are various reasons for gaps in the media
buffer:
• Unaligned Periods or segments
• Sample duration does not match segment

duration
• Positive @eptDelta or negative @pdDelta
• Negative @eptDelta for video can lead to lost

media samples, see
• Related blog post:

https://tinyurl.com/eptdelta
• GapController class in dash.js handles such gaps
• VoD: Immediate seek
• Live: Delayed seek, keep consistent live edge

Discarded media samples

Seg 1 Seg 2

Period@start / MSE.appendWindowStart

@eptDelta < 0

Period@start / MSE.appendWindowStart

Seg 2

gap

ID
R

https://tinyurl.com/eptdelta

dash.js - Configuration
Multiperiod playback & Gap Handling

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 58

Multiperiod in dash.js

Parameter Description Default

useAppend
Window

Specifies if the
appendWindow
attributes of the
MSE SourceBuffers
should be set
according to the
period durations in
manifest.

true

Reuse
Existing
SourceBuffe
rs

Enable reuse of
existing
MediaSource
Sourcebuffers during
period transition

true

Gap Handling in dash.js

Parameter Description Default

jumpGaps Defines whether the player should jump small gaps
(discontinuities) in the buffer.

true

threshold • Threshold at which the gap handling is executed. If
currentRangeEnd - currentTime < threshold the gap
jump will be triggered.

• For live stream the jump is delayed to keep a
consistent live edge.

• Note that the amount of buffer at which platforms
automatically stall might differ.

0.3

enableSeekFix Enables the adjustment of the seek target once no valid
segment request could be generated for a specific seek
time. This can happen if the user seeks to a position for
which there is a gap in the timeline.

true

enableStallFix If playback stalled in a buffered range this fix will
perform a seek by the value defined in stallSeek to
trigger playback again

false

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 59

• Don’t remove periods that are still in the DVR window
• Don’t change period IDs
• Avoid segment overlaps at period boundaries
• A negative @eptDelta can lead to samples being dropped

from the buffer
• A positive @eptDelta leads to a gap at the beginning of a

period
• A negative @pdDelta leads to a gap at the end of a period

• A switch from non-encrypted to encrypted content can cause
an MSE reset.

Recommendations / Best practices / Hints
Multiperiod Playback and Gap Handling

Try it out yourself:
https://reference.dashif.org/dash.js/nightly/sam
ples/multiperiod/live.html

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 60

dash.js demo
Multiperiod Playback and Gap Handling

https://reference.dashif.org/dash.js/nightly/samples/multiperiod/live.html
https://reference.dashif.org/dash.js/nightly/samples/multiperiod/live.html

Chapter 08

—
dash.js - Unit and Functional Testing

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 61

Unit Tests
dash.js - Unit and Functional Testing

• Test individual functions or methods (units)
• Located in „test/unit“, can be executed via „npm

run test“

• Automatically triggered for each pull request
• Note: Until dash.js 4.6.0 the unit tests were

executed in a node.js context. Some missing
objects like the „window“ were only present as a
mocked implementation. dash.js 4.6.0 introduces
unit test execution via the Karma testrunner in
“real“ browsers. Typically the execution is
performed in headless mode.

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 62

Functional Tests
dash.js - Unit and Functional Testing

• Checks the functionality of the player, for example play, pause and seek
• Automated execution of certain steps and verification of the playback

state afterwards

• Based on Selenium Grid and Intern framework
• Located in „test/functional“, documentation can be found here:

https://github.com/Dash-Industry-
Forum/dash.js/blob/development/test/functional/readme.md

• Daniel working on a new testsuite based on Karma Testrunner,
Selenium Grid and Appium. Allows execution on devices such as
Samsung SmartTVs and Android phones.

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 63

https://github.com/Dash-Industry-Forum/dash.js/blob/development/test/functional/readme.md
https://github.com/Dash-Industry-Forum/dash.js/blob/development/test/functional/readme.md

Demo - Functional Tests
dash.js - Unit and Functional Testing

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 64

Demo Report - Functional Tests
dash.js - Unit and Functional Testing

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 65

Functional Tests

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 66

dash.js demo
dash.js - Unit and Functional Testing

Chapter 09

—
How to debug your streams

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 67

Browser based debugging
How to debug your streams

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 68

DASH validation
How to debug your streams

• DASH-IF Conformance Validator supports multiple
profiles such as DASH-IF, DVB, HbbTV, CMAF and CTA-
WAVE

• The Conformance Validator was refactored and
optimized as part of the Joint Conformance Software
Project (JCCP). Join us on Github, Slack and Google
Groups
• https://github.com/Dash-Industry-Forum/DASH-IF-

Conformance
• https://groups.google.com/g/joint-conformance-

software-project-jccp/members
• https://join.slack.com/t/dashif/shared_invite/zt-

191r8cjva-4bu_5_SJ1U~d_oltjqWkEQ in #jccp

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 69

Conformance Validator: https://conformance.dashif.org/

https://conformance.dashif.org/
https://groups.google.com/g/joint-conformance-software-project-jccp/members
https://groups.google.com/g/joint-conformance-software-project-jccp/members
https://groups.google.com/g/joint-conformance-software-project-jccp/members
https://groups.google.com/g/joint-conformance-software-project-jccp/members
https://join.slack.com/t/dashif/shared_invite/zt-191r8cjva-4bu_5_SJ1U~d_oltjqWkEQ
https://join.slack.com/t/dashif/shared_invite/zt-191r8cjva-4bu_5_SJ1U~d_oltjqWkEQ
https://conformance.dashif.org/

ISOBMFF Segment Inspection
How to debug your streams

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 70

Bento4
• “A fast, modern, open-source C++

toolkit for all your MP4 and
DASH/HLS/CMAF media format
needs.“

• MPEG DASH & HLS packager

• MP4 parsing and modification

• Encryption and Decryption

• See https://www.bento4.com/

ISOViewer
• “GUI application to have closer

look ISO 14496-12 and other MP4
files”

• Read only

• https://github.com/sannies/isovie
wer/releases

MP4 Inspector
• “Chrome extension that can

render mp4 boxes in the Network
tab”

• Features
– Render mp4 boxes
– Side-by-side mp4 box comparison
– Download and concatenate

segments

• https://github.com/bitmovin/MP4
Inspector

§ Another tool: https://dev.to/video/mp4ff-beyond-mp4-boxes-2bee

https://www.bento4.com/
https://github.com/sannies/isoviewer/releases
https://github.com/sannies/isoviewer/releases
https://github.com/bitmovin/MP4Inspector
https://github.com/bitmovin/MP4Inspector
https://dev.to/video/mp4ff-beyond-mp4-boxes-2bee

Timing validation
How to debug your streams

• Small internal tool that checks for overlaps of
segments in periods

• Can be useful to find the reason for gaps in the
content

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 71

MPD proxy
How to debug your streams

• Idea: We can adjust the <BaseURL>
and the <Location> element to point
to a local proxy

• On the proxy we can modify the
MPD, for instance remove a specific
AdaptationSet or a specific attribute

• Allows us to break down a problem
into smaller pieces. For instance,
play only the video AS and check if
removing audio changes anything

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 72

Client/Media
Player

CDN
request MPD

unmodified MPD

Client/Media
Player

Proxy CDN

request
MPD

request
MPD

unmodified
MPD

modified
MPD

DASH-IF Live Simulator
How to debug your streams

• Creates a reference stream that can be customized for several
use cases

• Useful tool to quickly setup a reference stream for comparison
and testing

• Used VoD content and modified the MPD and the media
segments to provide a live source

• Various configuration options: https://github.com/Dash-
Industry-Forum/dash-live-source-simulator/wiki#complete-list-
of-options

• Version 1: https://github.com/Dash-Industry-Forum/dash-live-
source-simulator

• Work on version 2 has started: https://github.com/Dash-
Industry-Forum/livesim2

• Sample streams are hosted on https://livesim.dashif.org/

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 73

https://github.com/Dash-Industry-Forum/dash-live-source-simulator/wiki
https://github.com/Dash-Industry-Forum/dash-live-source-simulator/wiki
https://github.com/Dash-Industry-Forum/dash-live-source-simulator/wiki
https://github.com/Dash-Industry-Forum/dash-live-source-simulator
https://github.com/Dash-Industry-Forum/dash-live-source-simulator
https://github.com/Dash-Industry-Forum/livesim2
https://github.com/Dash-Industry-Forum/livesim2
https://livesim.dashif.org/

ABR Testbed
How to debug your streams

• Test different streams and different
players under various network
conditions

• Make sure that the ABR algorithms
behave in an optimal way

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 74

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 75

• The Reference UI of dash.js allows exporting the settings to be
shared via a URL. Enables configuration of the player and
sharing the configuration with other developers.

Recommendations / Best practices / Hints
How to debug your streams

Try it out yourself:
https://bitmovin.com/mp4inspector/

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 76

Bitmovin’s mp4 inspector
Segment Inspection

https://bitmovin.com/mp4inspector/

Chapter 09

—
dash.js - What‘s next?

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 77

What’s next
dash.js

07.05.23 © Fraunhofer FOKUS – Workshop dash.jsPage 78

CMSD
• Common Media Server Data

• Developed within CTA-WAVE

• Standard by which every media
server can communicate data
with each media object response

• Processing of the data can be
done by intermediate server and
players

• Example: Server provides
estimated throughput to be used
by the client for ABR decisions

• https://github.com/cta-
wave/common-media-server-data

ABR rework Other items

§ Improve throughput calculation
by offering additional
configuration options (sample
size, weights, mean calculation)

§ Add support for
“urn:mpeg:dash:adaptation-set-
switching:2016”

§ Refactor whole ABR decisioning
logic

§ Improved XML parsing (speed
improvements on low end
devices)

§ New reference UI
§ Support for forced-subtitles
§ MSE in webworkers

§ Feedback thread: https://github.com/Dash-Industry-Forum/dash.js/discussions/4111

https://github.com/cta-wave/common-media-server-data
https://github.com/cta-wave/common-media-server-data
https://github.com/Dash-Industry-Forum/dash.js/discussions/4111

June 13 – 14, 2023, Berlin

Advanced Streaming Technologies: DASH, HLS, SAND, Low Latency Streaming, Content Steering, Media

Delivery in 5G/6G, HbbTV, Video Player Tech, DRM, Quality of Experience, Edge and Cloud processing,

Remote Rendering, Green Streaming

Artificial Intelligence for Media: Generative AI, AI-based-Media-Encoding, Streaming Analytics, Content

Analytics and Metadata, AI based Media Solutions, Content Provenance and Authenticity

Media Applications and Services: Metaverse, Addressable TV, Dynamic Ad Insertion/Substitution,

Audience Measurement, Programmatic Advertisement, Holo Conferencing, XR

www.fokus.fraunhofer.de/go/mws

10th FOKUS Media Web Symposium

MARK YOUR

CALENDAR!

Contact
—

Fraunhofer FOKUS
Institute for Open Communication Systems
Kaiserin-Augusta-Allee 31
10589 Berlin, Germany
info@fokus.fraunhofer.de
www.fokus.fraunhofer.de

Daniel Silhavy
• Email:

daniel.silhavy@fokus.fraunhofer.de
• LinkedIn:

https://www.linkedin.com/in/daniel-
silhavy-21650a129/

mailto:daniel.silhavy@fokus.fraunhofer.de
https://www.linkedin.com/in/daniel-silhavy-21650a129/
https://www.linkedin.com/in/daniel-silhavy-21650a129/

