
John Leipper | Principal Solutions Architect

Live Streaming using SRT with QUIC Datagrams

08.05.2023

Maxim Sharabayko, Ph.D., Principal Research Engineer

Maria Sharabayko, Ph.D., Principal Data Scientist



© Haivision 2023

What is SRT?

o A sub-second latency live contribution
protocol on top of UDP (unicast)

o Stream multiplexing

o Bidirectional transmission

o Packet loss recovery (ARQ and/or FEC)
within a fixed end-to-end latency constraint

o Connection bonding (or path redundancy)

o Content agnostic

o An open-source library is available on GitHub

More info: SRT Protocol Overview (SVA 2020)
https://www.youtube.com/watch?v=MFJeyInLKZY

https://www.youtube.com/watch?v=MFJeyInLKZY


© Haivision 2023

SRT Alliance is More than 600 Members Now!

Webinar: Tuesday, May 9th at 10am ET
Plugfest: The whole week

Mark Your Calendars for the Next SRT InterOp Plugfest with YouTube

https://www.haivision.com/blog/broadcast-video/srt-interop-plugfest-with-youtube/


© Haivision 2023

Encapsulating SRT Packets in QUIC Datagrams

o DATAGRAM frames (like all QUIC frames) must fit completely inside a QUIC packet. In turn, QUIC 
packets must fit completely inside a UDP datagram since fragmentation is disabled in QUIC.

o To tunnel SRT over QUIC datagrams, a single SRT packet should be encapsulated into a single 
DATAGRAM frame (within the Datagram Data field of a QUIC datagram).

o See Tunnelling SRT over QUIC Internet-Draft (draft-sharabayko-srt-over-quic-00) for details.

https://datatracker.ietf.org/doc/draft-sharabayko-srt-over-quic/


© Haivision 2023

Proof of Concept Implementation

o The quicly library by Fastly was selected for the project as it supports both QUIC STREAM and 
DATAGRAM frames.

o srt-xtransmit is a testing utility that

o supports the UDP, TCP, SRT, and QUIC transport protocols,

o implements generate, receive, and route commands which allow the simulation of live media 
transmission at a constant or variable bitrate without the need for a media encoder and decoder.

o The transmission was made from a MacBook Pro laptop located in Rendsburg, Germany 
(client/sender side), to a Raspberry Pi 3 Model A+ computer based in Madrid, Spain (server/receiver 
side). Both devices were connected to the Internet via Wi-Fi.



© Haivision 2023

Test Setups



© Haivision 2023

Performance Evaluation

o A payload contains a packet 
sequence number, both NTP 64-bit system 
clock and monotonic clock timestamps of the 
moment when the generation of the payload 
was completed at the sender side, and other 
fields.

o This information is used to measure the 
transmission time of a payload, RFC3550 jitter, 
a Time-Stamped Delay Factor (TS-DF), and 
other performance metrics at the receiver 
side under the assumption that the clocks on 
both sender and receiver machines 
are synchronized.

Internet-Draft “Estimating Transmission Metrics
on a QUIC Connection”

draft-sharabayko-moq-metrics-00

https://datatracker.ietf.org/doc/html/draft-sharabayko-moq-metrics-00
https://datatracker.ietf.org/doc/html/draft-sharabayko-moq-metrics-00


© Haivision 2023

Experimental Results

o We chose to limit the generated constant 
bitrate (CBR) stream to 3 Mbps for 
both streaming with QUIC datagrams and 
tunnelling SRT over QUIC datagrams (giving 
6 Mbps in total) to ensure that link capacity 
would be enough for concurrent transmission 
of both streams.

o Streaming was done simultaneously for each 
experiment to equally capture the effect of 
possible network congestion or packet loss in 
both datasets.

* Note that SRT Latency setting was applied
for tunnelling SRT over QUIC transmission only



© Haivision 2023

Streaming via QUIC Datagrams (Experiment 3)



© Haivision 2023

Tunnelling via SRT over QUIC (Experiment 3)



© Haivision 2023

Side by Side Comparison (Time-Stamped Delay-Factor)

QUIC Datagrams
Average: 33.09 ms
Spikes up to: 292.19 ms

SRT over QUIC Datagrams
Average: ~0.28 ms
Spikes up to: ~7.41 ms



© Haivision 2023

Smoothed Round-Trip Time (Experiment 3)

The RTT graph is built from the SRT protocol msRTT statistics observed at the receiver side and includes delay associated 
with transmission over QUIC datagrams.

See also Examining SRT streaming over 4G connection

https://medium.com/innovation-labs-blog/examining-srt-streaming-over-4g-networks-925e71c45cdf


© Haivision 2023

Time-Stamped Delay Factor for all the Experiments



© Haivision 2023

Conclusions

o The research has shown that live streaming protocols such as SRT can be implemented on top of QUIC 
datagrams to achieve low latency streaming, while mechanisms such as SRT’s latency-aware ARQ-
based packet recovery can reduce packet loss.

o The resulting latencies and jitter can be constrained to sub-second values, depending on the network 
round-trip time.

o Lost packets can be recovered within the configured latency buffer, or dropped when latency 
boundaries are exceeded.



© Haivision 2023

Contacts and References

Get more info & share ideas:

o SRT Protocol Internet-Draft
https://datatracker.ietf.org/doc/html/draft-
sharabayko-srt-01

o Tunnelling SRT over QUIC Internet-Draft 
https://datatracker.ietf.org/doc/draft-
sharabayko-srt-over-quic/

o Blog on Medium
https://medium.com/innovation-labs-
blog/tagged/secure-reliable-transport

o SRT Open-source Library
https://github.com/Haivision/srt

o SRT Alliance
https://www.srtalliance.org/

o SRT Slack Channels
https://srtalliance.slack.com/

To join
https://slackin-srtalliance.azurewebsites.net/

Channels: #general, #develop, #quic-srt, #rfc

https://datatracker.ietf.org/doc/html/draft-sharabayko-srt-01
https://datatracker.ietf.org/doc/html/draft-sharabayko-srt-01
https://datatracker.ietf.org/doc/draft-sharabayko-srt-over-quic/
https://datatracker.ietf.org/doc/draft-sharabayko-srt-over-quic/
https://medium.com/innovation-labs-blog/tagged/secure-reliable-transport
https://medium.com/innovation-labs-blog/tagged/secure-reliable-transport
https://github.com/Haivision/srt
https://www.srtalliance.org/
https://srtalliance.slack.com/
https://slackin-srtalliance.azurewebsites.net/


© Haivision 2023

Authors’ Contacts

Maxim Sharabayko

E-mail: maxsharabayko@haivision.com

GitHub: @maxsharabayko

LinkedIn: https://www.linkedin.com/in/maxim-
sharabayko/

SRT Alliance Slack: @Maxim - Haivision

Maria Sharabayko

E-mail: msharabayko@haivision.com

GitHub: @mbakholdina

LinkedIn: https://www.linkedin.com/in/maria-
sharabayko-ph-d-0256b718b/

SRT Alliance Slack: @Maria - Haivision

mailto:maxsharabayko@haivision.com
https://www.linkedin.com/in/maxim-sharabayko/
https://www.linkedin.com/in/maxim-sharabayko/
mailto:msharabayko@haivision.com
https://www.linkedin.com/in/maria-sharabayko-ph-d-0256b718b/
https://www.linkedin.com/in/maria-sharabayko-ph-d-0256b718b/




haivision.com


	Slide 1
	Slide 2: What is SRT?
	Slide 3: SRT Alliance is More than 600 Members Now!
	Slide 4: Encapsulating SRT Packets in QUIC Datagrams
	Slide 5: Proof of Concept Implementation
	Slide 6: Test Setups
	Slide 7: Performance Evaluation
	Slide 8: Experimental Results
	Slide 9: Streaming via QUIC Datagrams (Experiment 3)
	Slide 10: Tunnelling via SRT over QUIC (Experiment 3)
	Slide 11: Side by Side Comparison (Time-Stamped Delay-Factor)
	Slide 12: Smoothed Round-Trip Time (Experiment 3)
	Slide 13: Time-Stamped Delay Factor for all the Experiments
	Slide 14: Conclusions
	Slide 15: Contacts and References
	Slide 16: Authors’ Contacts
	Slide 17
	Slide 18

