

MHV-2023: Amazon Technical Session

Perceptually motivated compression efficiency for live encoders

Ramzi Khsib

Principal software Engineer AWS Elemental

© 2023, Amazon Web Services, Inc. or its affiliates

Ramzi Khsib

Principal Software Engineer AWS Elemental

© 2023, Amazon Web Services, Inc. or its affiliates.

Agenda

- Introduction
- Machine learning driven encoder configuration
- Video input pre-filter
- Results
- Conclusions

Improve video compression efficiency

Improve video compression efficiency:

- Novel coding tools
- Optimize coding tools
- Specific scenarios optimization: QVBR, per title, etc.
- Pre-filter input video

Novel coding tools

New generation of codecs challenges:

- New decoder
- Diminishing returns
- Compute cost

Live applications challenges

Compression efficiency in live encoders is challenging:

- Realtime processing
- Limited compute power
- Limited latency

Real Time ML driven dynamic encoder configuration

Video encoder configuration

Configurable with command line options

One among many settings is selected

Varying impact on efficiency

High	•	High	-
		Off	
		Low	
		Medium	
		High	
		Higher	
		Max	

Optimal encoder configuration

• ~20 options to configure

• Highly content dependent

• Search space is **astronomical**

Presets / encoding recipes

Simplify encoder optimization.

Pre-defined sets of configuration options

Optimized for specific content types:

- Film grain presets
- Screen content presets
- High motion presets

Presets in action

Video Asset

Film Grain Tuning

Shortcomings of presets

- Limited granularity
- High level of expertise.
- Manual tuning

Content adaptive encoder limitations

- Mainly Rate Control: Adaptive bitrate (ABR)
- VOD only: limited application for live encoding

Need:

Dynamic content adaptivity in live applications

Content adaptive dynamic encoder configuration

Fine granularity encoder settings optimization

Content adaptive

Compression and rate control aware.

Dynamic presets in action

Video Asset		BERRK#		
Sequence Level Tuning	Tuning Sequence #0	Tuning Sequence #1	Tuning Sequence #2	Tuning Sequence #3
Granularity				GOP #0 Tuning GOP #1 Tuning GOP #2 Tuning

Dynamic encoder configuration design principles

- 1. Optimize video quality
- 2. Dynamically adaptive to content
- 3. High throughput and low latency
- 4. Scalable and robust

Content Adaptive Dynamic Encoder Configuration design

Content adaptation:

- 1. Content Analysis: Extract features from look ahead buffer
- 2. Prediction: ML driven optimal encoder configuration

Highly performant machine learning models

Meta ensemble :

- Ensemble learns from a selected objective metric
- Voting/blending uses learnt weighted average

State of the Art: Input Video Pre-Filters

Increase compression efficiency by reducing noise

Reduce video complexity:

- Motion Compensated Temporal Filter
- Filter original pixels

Input video pre-Filter: filter input video prior to compression

Input video pre-filter advantages

- 1. Codec agonistic
- 2. No decoder spec change
- 3. Significant efficiency increase
- 4. Noisy content: visually appealing

Input video pre-filter in video codecs

Called Temporal Filter in reference to MCTF

Idea not new:

- Proposed in VP8 and VP9
- **HEVC**: HM in version HM16.1
- AV1: AOM-AV1 SVT-AV1
- VVC
- AV2

Pixel domain filter

The Bilateral filter:

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}}(||\mathbf{p} - \mathbf{q}||) G_{\sigma_{r}}\left(||\vec{V}_{\mathbf{p}} - \vec{V}_{\mathbf{q}}||^{2}\right) I_{\mathbf{q}}$$

NLM removes the spatial component

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{\mathbf{s}}}(\mathbf{p} - \mathbf{q}||) G_{\sigma_{\mathbf{r}}}\left(||\vec{V}_{\mathbf{p}} - \vec{V}_{\mathbf{q}}||^{2}\right) I_{\mathbf{q}}$$

HM Temporal Filter: weighted Average

© 2023, Amazon Web Services, Inc. or its affiliates

LibAOM AV1 temporal filter

Keys differences to HM:

- NLM model
- Block based
- Adaptive noise level

Pixel based filter shortcomings

+ Improved efficiency in noisy content

- Not recommended for pristine content

Pixel based filter visual issues

Non optimal filtering:

- 1. Visible sharpness loss
- 2. Visible blocking
- 3. Blurriness in texture/film grain

Transform domain collaborative filtering

Original

Patch Locations

Patches

Transform domain collaborative filtering

Pixel domain filters

Pros:

• Great bandwidth reduction

Cons:

- Quality depends on motion estimation
- Texture softness
- Compute cost

Transform domain filters

Pros:

• Better texture preservation

Cons:

- Hyperparameter tuning
- Compute

Deep learning based filtering

Pros:

• Greater filtering capabilities

Cons:

- Compute cost
- Higher latency
- Reduced throughput

Proposed Filter

Filter design principles

- Dual domain filter
- Suitable for live encoders
- Preserve textures
- Reduce bandwidth
- Rate control aware

Dual domain filter architecture

Dual domain filter architecture

Perceptual thresholds module

Perceptual thresholds module computes:

- Filtering strengths
- Perceptual thresholds
- Aggregation weights

Perceptually guided thresholds

HVS motivated optimal filtering

Human vision system (HVS) models:

- Contrast sensitivity function
- Texture masking
- Luma adaptation
- Motion aliasing
- Artifacts visibility with quantization

Contrast sensitivity function

Logarithmic spatial frequency (cpd)

Texture masking

+

Additive white Gaussian noise

Quantization aware masking

Optimal filtering:

- In-loop filter
- Block based filter
- Rate control aware: multi models

Perceptual thresholds

Combine HVS models and block based filtering:

Aggregation

Aggregate spatial / transform domain:

Block based sigmoid scaling:

$$Weight = \frac{c}{1 + b \times e^{(-Text \times a)}}$$

Results

© 2023, Amazon Web Services, Inc. or its affiliates.

Content adaptive dynamic encoder configuration Computation

- Computation load: < 2% AVC encoding time
- Deployed in live application

Content adaptive dynamic encoder configuration (2)

Dynamic content:

• VMAF: 7% to 21% BD-rate improvement

- Subjective Comparison: video experts (golden eyes)
 - Range 6% to 8% with up 15% bandwidth reduction

Content adaptive dynamic encoder configuration (3)

Input pre-filter

Computation

- AVC: ~18% encoding time
- HEVC: ~13% encoding time

VMAF: 8% to 15% BD-rate improvement*

Subjective comparison (golden eyes) *

- Range 8% to 12%
- * Results are highly content dependent

Input pre-filter subjective results

High fidelity filtering: film grain, texture, edges etc.

Suitable for:

- Pristine
- Lightly distorted content
- Heavily distorted content

Conclusions

Conclusions

Suitable for live applications:

- Dynamic encoder configuration
- Input pre-filter

Substantial compression efficiency

Reduced latency, low compute cost

Thank you!

Ramzi Khsib

Khsramzi@amazon.com

ramzi@ieee.org

© 2023, Amazon Web Services, Inc. or its affiliates.

