

Bandwidth Prediction in Low-Latency Media Transport

ACM Mile-High Video, May 2023

Abdelhak Bentaleb, Mehmet N. Akcay, May Lim, Ali C. Begen and Roger Zimmermann

ACM MHV - May 2023

Measurement, Smoothing and Prediction

The Challenge

Accurate bandwidth estimation/prediction

- Adapting the video bitrate dynamically

Superior overall QoE

- High quality
- Low latency (< 500 ms)
- Few (and short) stalls

The Considerations

Relation to congestion control (applicationlevel performance vs. packet-level behavior)

Video and audio quality

Frame loss and delay

Coarse-grained rate control

"Unpredictable" bandwidth fluctuations

Motivation

Last-mile access network is the main culprit in RTC system performance

Learning-Based Solutions for Bandwidth Estimation and ABR

LiveNAS [SIGCOMM'20]	HRCC [MMSys'21]
----------------------	-----------------

(ML for live video streaming) (ML for bandwidth estimation)

Pensieve				
[SIGCOMM'17]	Qflow [MOBICOM'19]	Orca [SIGCOMM'20]	Gemini [MMSys'21]	Zhuge [SIGCOMM'22]
(ML for video)	(ML for packet classification)	(ML for congestion control)	(ML for bandwidth estimation)	(ML for RTC)

PCC Vivace [NSDI'18] (ML for congestion control) Puffer [NSDI'20] (ML for video streaming) AMP [TMM'21] (ML for bandwidth streaming)

OnRL [MOBICOM'20]

(ML for RTC)

BoB (Bang-on-Bandwidth) Workflow

BoB combines a heuristic-based controller (inspired by the GCC algorithm) with a DRL controller

Receiver-Side BoB Controller

- BoB learning
 - BoB is added to AlphaRTC GYM simulator (ns-3 with WebRTC implementation)
 - BoB NN input: receiving rate, packet delay and loss and most recent bandwidth prediction samples
 - BoB NN output (every 200 ms): Predicted bandwidth
 - DRL architecture: actor-critic with PPO and Adam optimizer
- BoB testing
 - Sender: Loss-based controller
 - Compute target sending rate x*
 - Receiver: BoB controller
 - Compute bitrate (x^r) based on the BoB prediction

Heuristic Controller

- Key idea
 - Estimate the bandwidth based on aggregated per-packet RTP feedback
- Strength
 - Good convergence in some scenarios
 - Easy to implement
 - Low overhead
- Weakness
 - Fail to achieve consistent high performance in diverse network environments

DRL Controller

- Key idea
 - Predict the bandwidth based on NN model trained using various network conditions
- Strength
 - Strong adaptability to diverse network environments
- Weakness
 - Not easy to deploy
 - Sometimes it may not converge

BoB Adaptive Selector

Decide when to switch between the heuristic and DRL controllers

- At the beginning of an RTC session
 - Use the heuristic controller
- During the RTC session
 - Compute the absolute difference (diff) between
 - bandwidth predicted by the heuristic controller
 - bandwidth predicted by the DRL controller
 - Compute the average predicted bandwidth (avg) value based on both controllers
 - If diff/avg is less than 30%
 - Use the DRL controller
 - Otherwise
 - Use the heuristic controller

Implementation and Evaluation

- Implemented in Microsoft's AlphaRTC
 - Code available on GitHub
- Network profiles:
 - Cascade
 - LTE
 - Twitch
 - FCC Amazon
 - Synthetic
- Video sample:
 - BBB with 24 fps
- Comparison: BoB vs. heuristic-based, Gemini and HRCC
 - Further details in the paper

- Evaluation metrics
 - sMAPE (symmetric mean abs. % error) and accuracy
 - Network score: a combination of delay score, loss score and receiving rate score
 - Video score: VMAF
 - Total Score: Network score + video score
 - Cascade -- LTE Twitch -- FCC Amazon -- Synthetic

Actual and Predicted Bandwidth

Total Score

Average for different network profiles

Internet-Based Setup

OpenNetLab (https://opennetlab.org/)

	Network Profile	Sender Node	Receiver Node	Path Bandwidth	Avg. RTT
А	High Bandwidth	Lanzhou (Wired)	Seoul (Wired)	> 100 Mbps	30 ms
В	Medium Bandwidth	Beijing (Mobile)	Hong Kong (Wired)	2-3 Mbps	62 ms
С	Low Bandwidth	Beijing (Weak wireless)	Hong Kong (Wired)	< 1 Mbps	55 ms

Internet-Based Setup

OpenNetLab (https://opennetlab.org/)

Video, Network and Total Scores

17

AMAAAS*

- Download and use the BoB code
 - GitHub: https://github.com/NUStreaming/BoB
 - Use and test it, open issues and report bugs
- Download the BoB paper (open access)
 - https://doi.org/10.1109/TMM.2022.3216456

- Reach out to any of us for questions
 - abdelhak.bentaleb@concordia.ca
 - necmettin.akcay@ozu.edu.tr
 - maylim@comp.nus.edu.sg
 - ali.begen@ozyegin.edu.tr
 - rogerz@comp.nus.edu.sg

BoB code BoB paper

This deck (and many others) are posted at https://ali.begen.net

* AMAAAS: Ask me almost anything about streaming