

Cloud-based Workflow for AVC Film Grain Synthesis

09-MAY-2023

MHV 2023

Presenter: Vijayakumar Gayathri Ramakrishna – ITTIAM

Co Authors: Kaustubh Shripad Patankar – ITTIAM Mukund Srinivasan - ITTIAM

Introduction to Film Grain Technology

Cloud Workflow for Grain Parameter Insertion

Tools for Grain Parameters Processing

Grain Parameters Estimation Process

Results and Conclusion

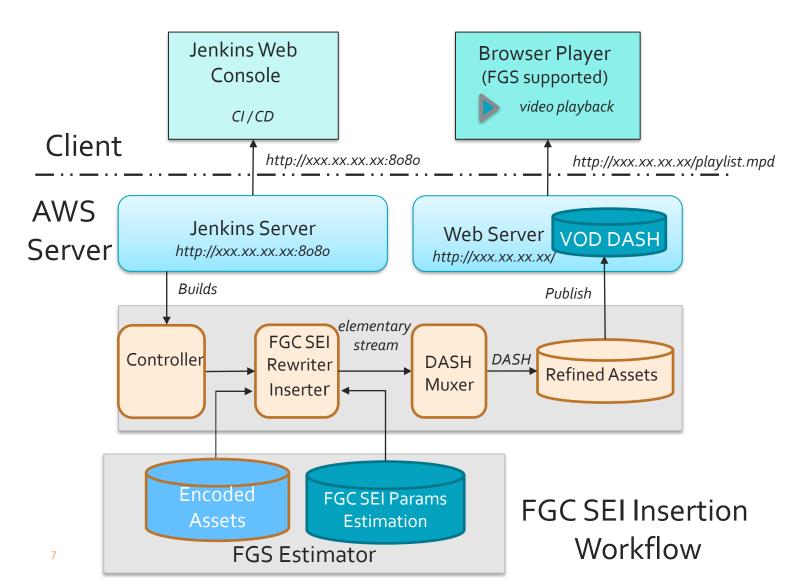
Keywords and Acronyms

Acronym	Description	
FGC SEI	Film Grain Characteristics Supplemental Enhancement Information	
FGS	Film Grain Synthesis Process	
FGS Rewriter	Bitstream Editor to insert/alter FGS SEI	
VOD	Video on Demand	
ΟΤΤ	Over the Top - Technology that delivers streamed content over the internet	
AV1	AOM Video coding standard	
AVC/H.264	ITU-T H.264 ISO/IEC 14496-10 video coding standard	
HEVC/H.265	ITU-T H.265 ISO/IEC 23008-2 video coding standard	
VVC/H.266	ITU-T H.266 ISO/IEC 23090-3 video coding standard	
WASM	WebAssembly	
JS	JavaScript	

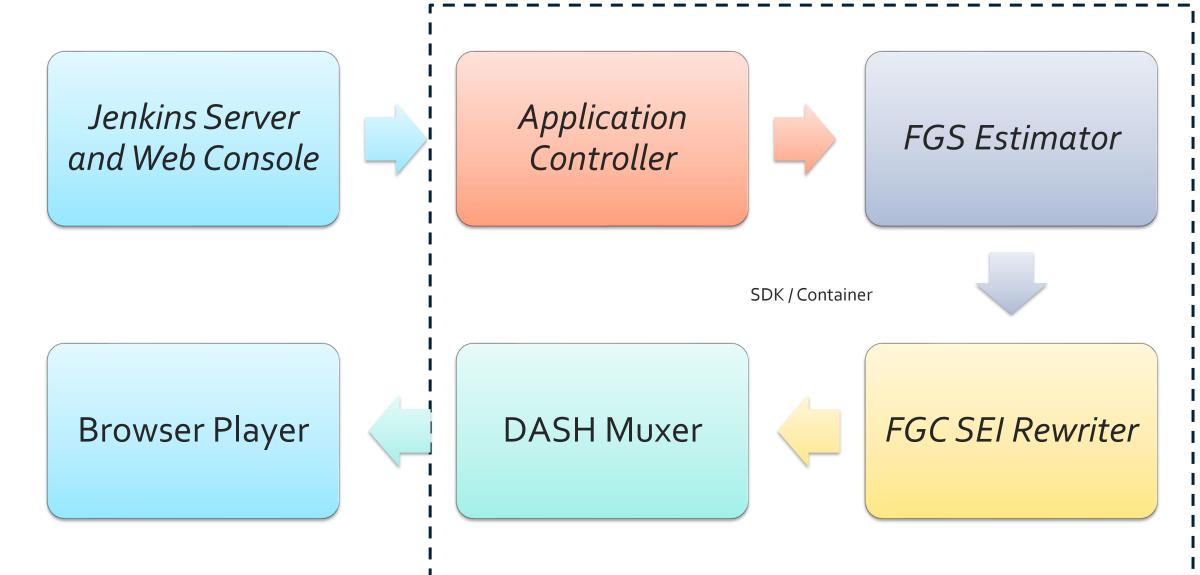
Introduction to Film Grain Technology

Film Grain Technology

Technology in Codecs	Part of multiple video coding standards	AVC, HEVC, VVC
		AVı
	AVı	Mandatory synthesis process
		Auto Regressive Model
	AVC, HEVC, and VVC	Optional synthesis process
		Frequency Filtering and Auto Regressive
Classic Application	Video preprocessing	Denoising of input
		Improves compression efficiency
	Removed Noise	Modelled as FGC SEI parameters
		Signalled as metadata
	Video Post Processing	Re-synthesize the noise
		Re-create original look of the video
Artifact Mitigation Application	Video Editing	Video sources do not have noise
		Add artificial "Comfort Noise"
	Compression Aid	Masking coding artifacts
		Improve sharpness at low bitrates
	Content Adaptive	Grains are content dependent
		Analysis at scene / segment level



Cloud Workflow for Grain Parameter Insertion


SERVER CLIENT MODEL

- Content without Film grains
- Low bitrate applications
- Designed as Server Client model
- Browser-based playback using WASM
- Streaming and OTT applications
- Avoids transcoding and hence preserving quality

Components of Workflow

Tools for Grain Parameters Processing

Key Tools for FGC / FGS

FGS Synthesis FGS Synthesis software in GitHub

<u>https://github.com/ittiam-systems/libfgs</u>

FGC SEI RewriterFGC SEI Rewriter software in GitHub

• <u>https://github.com/ittiam-systems/libfgc-rewriter</u>

H264 Decoder Decoder supporting FGC SEI Parsing and export

<u>https://github.com/ittiam-systems/lib264</u>

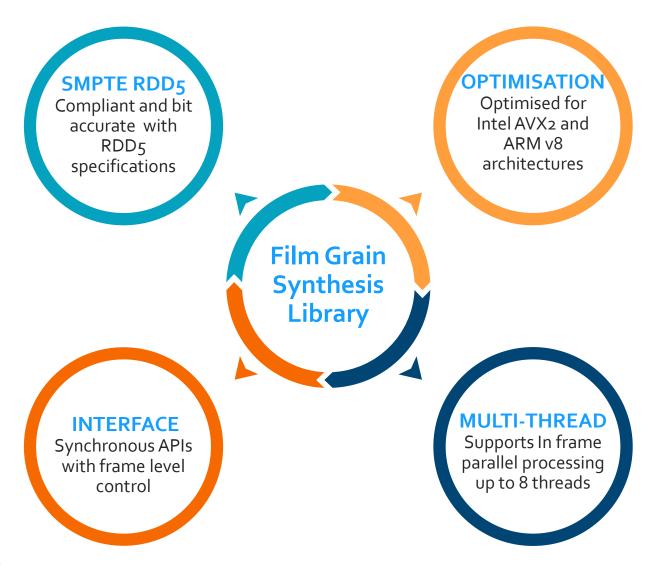
WASM Player

Brower based demo player

<u>https://demo.ittiam.com/demo/i264_fgs</u>

Film Grain Rewriter / Inserter

Low complexity utility used for editing and inserting FGC SEI messages


Supports 2 modes of operation

- FGC SEI editing with specific parameters modification
- SEI Insertion if there are no FGC SEI present in the stream

Currently supports AVC, can be extended to other MPEG standards

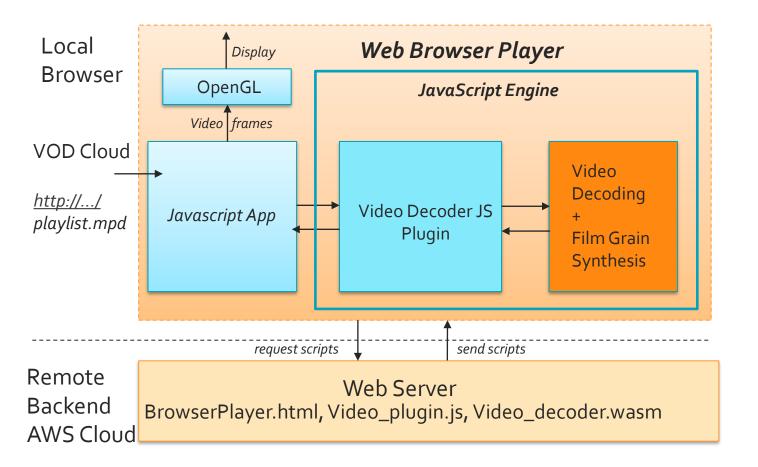
Film Grain Synthesizer Library

Film Grain Synthesis Performance on Single core

Processor	Frequency	1920x1080 processing time
і7-6770НQ	3.5 GHz	1.25 millisecond / frame [800 FPS]
Kryo 475	2.4 GHz	1.95 millisecond / frame [512 FPS]

Film Grain Video Player on Browser

Media types supported


- Local Media Playback
- Cloud-hosted DASH Playback

Operating system supported

- Windows
- Linux
- Android
- MacOS

Web Browser supported

- Microsoft Edge
- Google Chrome
- Mozilla Firefox
- Safari

Grain Parameters Estimation Process

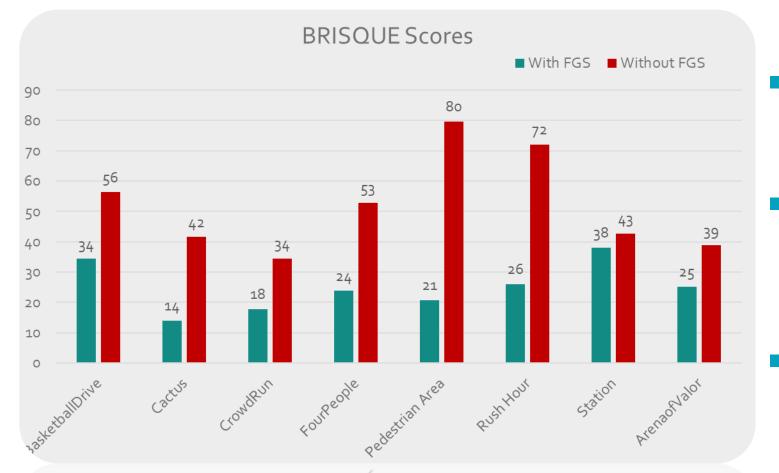
FGC Estimator

Objective

- Determine if the content/ scene can benefit from FGS SEI Insertion
- Determine the extent of blockiness, banding, loss of details and ringing artifacts
- Estimate the grain model parameters that can mask visual artifacts

Approach

- Human eye is more sensitive to distortions in spatially low variance areas
- Assess the amount of banding and blockiness in these low variance areas
- Determine intensity intervals and strength of noise which can aid in masking artifacts



Results and Conclusion

Results – Objective Assessment

BRISQUE – BLIND/REFERNECE LESS IMAGE SPATIAL QUALITY EVALUATOR

1080p contents encoded at bitrates ranging from 3Mbits/ sec to 6Mbits/sec using industry standard AVC Encoders Non-reference metric to evaluate image quality in the spatial domain

Ranges from o to 100, wherein a lower score indicates a higher quality and vice versa

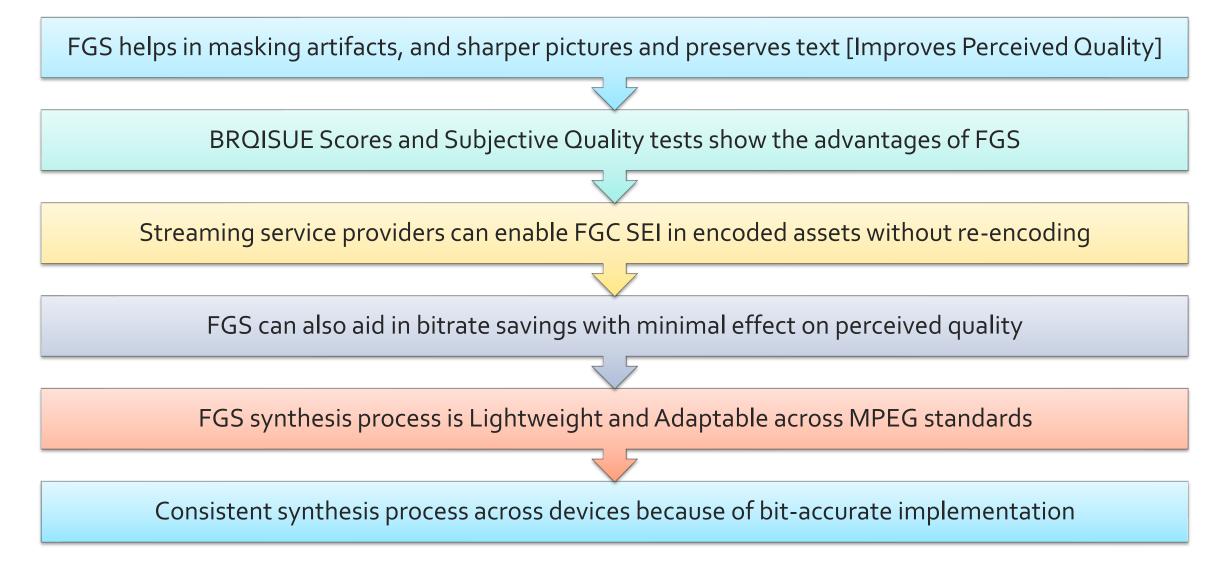
BRISQUE scores are consistently lower with FGS as compared to without FGS

Results – Subjective Assessment

BASED ON ITU-R-BT.500 SPECIFICATIONS

Snapshot 1: Pedestrian Sequence Left (With FGS) Right (No FGS)

Results – Subjective Assessment


BASED ON ITU-R-BT.500 SPECIFICATIONS

Snapshot 2: Four People Sequence Left (With FGS) Right (No FGS)

Conclusion

THANKYOU

Contact Info Website : <u>https://www.ittiam.com/</u> Email : <u>info@ittiam.com</u>