REDUCING DELIVERY COSTS by Optimal Multi-CDN Traffic Allocation

Yuriy Reznik, Bo Zhang, Ron Zekarias, Ted Krofssik, Guillem Cabrera*, Stuart Hicks*, Nabajeet Barman*, and Andrew Sinclair** Brightcove, Inc., (*) Brightcove UK, Ltd., (**) Brightcove Australia, Pty Ltd.

BRİGHTCOVE

May 7-10, 2023, Denver, CO

MULTI-CDN DELIVERY

APPLICATIONS / UTILITIES

- Multi-region delivery
- Better scale (load balancing)
- Improved reliability (failover)
- Improved QOE (QOS/QOE optimizations)

BUT..CAN IT ALSO REDUCE THE COSTS?

- ► The intuitive answer is no:
 - > Each CDN comes with a rate ladder
 - > Splitting the volume leads to higher rates

BRİGHTCOVE®

COST MODELS ARCHITECTURE

COST MODELS

- ► CDN costs:
- CDN commits add extra constraints
- Origin costs:

$$C_{O,A} = R_{O,A} \cdot V_{O,A}, \quad R_{O,A} = piecewise(V_{O,A}, \dots)$$

$$C_{O,B} = R_{O,B} \cdot V_{O,B}, \quad R_{O,B} = piecewise(V_{O,B}, \dots)$$

► Generally, origins are more expensive

BRİGHTCOVE®

VARIABLES

- Edge volume: V_A , V_B
- Origin volume: $V_{0,A}$, $V_{0,B}$
- Cache miss probabilities: p_A , p_B

RELATIONSHIPS

• Origin/edge volume: $V_{O,A} = V_A \cdot p_A$ $V_{O,B} = V_B \cdot p_B$

FULL COSTS

• Origin + CDN costs: $C_{\Sigma,A} = C_{O,A} + C_A = V_A (p_A \cdot R_{O,A} + R_A)$ $C_{\Sigma,B} = C_{O,B} + C_B = V_B (p_B \cdot R_{O,B} + R_B)$

Effective rates:

$$R_{\Sigma,A} = p_A \cdot R_{O,A} + R_A$$
$$R_{\Sigma,B} = p_B \cdot R_{O,B} + R_B$$

LESS EXPENSIVE PATHWAY

COMPARING THE COSTS

- Assume that origin costs are the same: $R_{0,A} = R_{0,B} = R_0$
- Effective rates along each pathway:

 $R_{\Sigma,A} = p_A \cdot R_O + R_A$ $R_{\Sigma,B} = p_B \cdot R_O + R_B$

Pathway A is less expensive if:

$$R_{\Sigma,A} < R_{\Sigma,B} \quad \Rightarrow \quad p_A \cdot R_O + R_A < p_B \cdot R_O + R_B$$

$$\Rightarrow \qquad p_A - p_B < \frac{R_B - R_A}{R_O} = \xi$$

EXAMPLES

SYNOPSIS	R_O	R_A	R _B	ξ	p_A	p_B	$p_A - p_B$	LESS EXPENSIVE PATHWAY
CDN A is cheaper & better in cache performance	0.02	0.002	0.0025	0.025	0.07	0.1	$-0.03 < \xi$	A
CDN A is cheaper & worse in cache performance	0.02	0.002	0.0025	0.025	0.1	0.07	0.03 > ξ	В
CDN A is more expensive & better in cache performance	0.02	0.0025	0.002	-0.025	0.07	0.1	-0.03 < ξ	A
CDN A is more expensive & worse in cache performance	0.02	0.0025	0.002	-0.025	0.1	0.07	$0.03 > \xi$	В

NB: Cache performance has a major impact on overall costs and choice of best pathway.

BRİGHTCOVE

IMPACT OF CONTENT POPULARITY

FUNDAMENTAL RELATIONSHIP

- If content is popular, it gets cached with higher probability
- But.... such relationships may vary across CDNs, regions, and under different load
- To describe them we may use parametric models, e.g.:

$$p_A(v) = \frac{1}{1 + (v/v_A)^{\gamma}}, \qquad p_B(v) = \frac{1}{1 + (v/v_B)^{\gamma}};$$

where

v $p_{A}(v), p_{B}(v)$ v_A , v_B ν

– content access frequency (e.g. requests/day)

- cache miss probabilities of CDN A and CDN B, respectively

- CDN-specific model parameters
- model shape parameter

EXAMPLES

Assume that $v_A = 50, v_B = 20$

Model plots for $\gamma = 1, 2:$

Related publications / studies

P. Franaszek and T. Wagner, "Some distribution-free aspects of paging algorithm performance," JACM, 21(1), 1974, pp.31-39.

P. R. Jelenkovic, "Asymptotic approximation of the move-to-front search cost distribution and least-recently-used caching fault probabilities," Ann. Appl. Probab., 9 (2), 1999, pp. 430-464.

S. Triukose, Z. Wen, and M. Rabinovich, "Measuring a Commercial Content Delivery Network," ACM WWW, 2011.

M. Ghasemi, P. Kanuparthy, A. Mansy, T. Benson, and J. Rexford, "Performance characterization of a commercial video streaming service," ACM ICM, 2016.

Y. Reznik, T. Teixeira, and R. Peck, "On multiple media representations and CDN performance," ACM MHV, 2022.

FINDING LESS EXPENSIVE PATHWAY

INITIAL SOLUTION

For fixed p_A , p_B , we already established that:

$$R_{\Sigma,A} < R_{\Sigma,B} \Rightarrow p_A - p_B < \frac{R_B - R_A}{R_O} = \xi$$

Models for cache miss probabilities:

$$p_A(v) = \frac{1}{1 + (v/v_A)^{\gamma}}, \qquad p_B(v) = \frac{1}{1 + (v/v_B)^{\gamma}}$$

Translation to bounds for access frequency v:

$$R_{\Sigma,A} < R_{\Sigma,B} \Rightarrow v \in \begin{bmatrix} [0,\infty) & if \quad v_A < v_B \text{ and } R_A < R_B \\ (v_1^*, v_2^*) & if \quad v_A < v_B \text{ and } R_A > R_B \\ [0,v_1^*) \cup (v_2^*,\infty) & if \quad v_A > v_B \text{ and } R_A < R_B \\ \emptyset & if \quad v_A > v_B \text{ and } R_A > R_B \end{bmatrix}$$

• Where $v_1^* < v_2^*$ are the real positive roots of $\frac{1}{1 + (v/v_A)^{\gamma}} - \frac{1}{1 + (v/v_B)^{\gamma}} = \xi$

• E.g., for
$$\gamma = 2$$
:

$$v_{1}^{*} = \frac{1}{\sqrt{2\xi}} \sqrt{v_{A}^{2} - v_{B}^{2} - \xi(v_{A}^{2} + v_{B}^{2}) - \sqrt{(v_{A}^{2} - v_{B}^{2})(v_{A} - v_{B} - \xi(v_{A} + v_{B}))(v_{A} + v_{B} - \xi(v_{A} - v_{B}))}}$$

$$v_{2}^{*} = \frac{1}{\sqrt{2\xi}} \sqrt{v_{A}^{2} - v_{B}^{2} - \xi(v_{A}^{2} + v_{B}^{2}) + \sqrt{(v_{A}^{2} - v_{B}^{2})(v_{A} - v_{B} - \xi(v_{A} + v_{B}))(v_{A} + v_{B} - \xi(v_{A} - v_{B}))}}$$

EXAMPLE

• CDN A is cheaper: $R_A < R_B$, $\xi = 0.025$

Pathway A p_A

Pathway B

- But worse as a cache: $v_A = 50$, $v_B = 20$
- Roots: $v_1^* \approx 3.51$ and $v_2^* \approx 284.76$
- The solution: $v \in [0, v_1^*) \cup (v_2^*, \infty)$
- NB: using pathway A in this case makes sense only for high access or long tail content!

©2023 Brightcove Inc. All Rights Reserved.

50 100

Acess frequency, v

10

500 1000

VOD: BEST PER-ASSET CDN ASSIGNMENT

CONSIDER A LARGE CATALOG

- Videos are ordered according to access frequencies
- Follow Zeta distribution:

 $u(i) = \zeta(\alpha)^{-1} i^{\alpha}$

where α is a shape parameter, and $\zeta(\alpha)$ is the Riemann's Zeta function, *i* is an asset index.

BEST PER-ASSET CDN ASSIGNMENT

For given CDN prices R_A , R_B and cache miss models $p_A(v)$, $p_A(v)$, we can show that:

$$R_{\Sigma,A} < R_{\Sigma,B} \Rightarrow i \in \begin{bmatrix} [1,\infty) & if \quad v_A < v_B \text{ and } R_A < R_B \\ (i_1^*, i_2^*) & if \quad v_A < v_B \text{ and } R_A > R_B \\ [1,i_1^*) \cup (i_2^*,\infty) & if \quad v_A > v_B \text{ and } R_A < R_B \\ \emptyset & if \quad v_A > v_B \text{ and } R_A > R_B \end{bmatrix}$$

where $i_1^* = (v_2^*/C_{\alpha})^{-1/\alpha}$, $i_2^* = (v_1^*/C_{\alpha})^{-1/\alpha}$ are boundary points, C_{α} - normalization constant

EXAMPLE

- CDN A is cheaper: $R_A < R_B$, $\xi = 0.025$
- Worse as cache: $v_A = 50$, $v_B = 20$, $\gamma = 2$
- Roots: $v_1^* \approx 3.51$ and $v_2^* \approx 284.76$
- Content distribution: $\alpha = 1.16$, $C_{\alpha} = 1000$
- Boundary points: $i_1^* \approx 3$, $i_2^* \approx 130$
- ► Solution for CDN-A: $i \in [1, i_1^*) \cup (i_2^*, \infty)$

M. Cha, et al, "Analyzing the Video Popularity Characteristics of Large-Scale User Generated Content Systems," IEEE/ACM Trans. Networks, vol. 17, 2009, pp 1357-1370.

N. Kamiyama and M. Murata, "Reproducing Popularity Distribution of YouTube Videos," in IEEE Transactions on Network and Service Management, vol. 16, no. 3, 2019, pp. 1100-1112.

VOD: COST OPTIMIZATION PROBLEM

GIVEN

- $\blacktriangleright R_A(V), R_B(V)$
- \blacktriangleright $V_{A,\min}, V_{B,\min}$
- $\blacktriangleright p_A(v,V), p_B(v,V)$
- $u(i), i \in [1, N]$
- $\blacktriangleright V_{\Sigma} = V_A + V_B$

- price/rate ladders for CDNs A and B
- minimum volume commits for each CDN
- ► $R_{0,A}(V), R_{0,B}(V)$ rate ladders for origins A and B
 - cache miss models for CDNs A and B
 - content popularity distribution across catalog
 - total volume delivered by the system

FIND

 \blacktriangleright $i_A^*, i_B^*: i_A^* \cup i_B^* = [1, N]$ – subsets of catalog items routed to CDN A and B, respectively

SUCH THAT

 $C_{\rm A}(i_{\rm A}) + C_{\rm B}(i_{\rm B})$ $C_{\rm A}(i_A^*) + C_B(i_B^*) =$ min $i_A, i_B: i_A \cup i_B = [1, N]$ $V_A(i_A) \ge V_{A,\min}$ $V_B(i_B) \ge V_{B,\min}$

WHERE

► $V_A(i_A) = \sum_{i \in i_A} V_{\Sigma} u(i)$, $V_B(i_B) = \sum_{i \in i_B} V_{\Sigma} u(i)$ – edge volumes delivered by CDN A and B, respectively

- $\blacktriangleright V_{0,A}(i_A) = \sum_{i \in i_A} V_{\Sigma} u(i) \cdot p_A (V_{\Sigma} u(i), V_A(i_A)), \quad V_{0,B}(i_B) = \sum_{i \in i_B} V_{\Sigma} u(i) \cdot p_{AB} (V_{\Sigma} u(i), V_B(i_B)) \text{volumes processed by each origin server}$
- $\blacktriangleright C_A(i_A) = V_{O,A}(i_A) \cdot R\left(V_{O,A}(i_A)\right) + V_A(i_A) \cdot R_A\left(V_A(i_A)\right), \quad C_B(i_B) = V_{O,B}(i_B) \cdot R\left(V_{O,B}(i_B)\right) + V_B(i_B) \cdot R_B\left(V_B(i_B)\right) \text{total costs along each pathway}$

Transcoder

IMPLEMENTATION USING HLS/DASH CONTENT STEERING FRAMEWORK

- ► All cost-related optimization decisions are made by **steering control** logic
- Manifest updaters and edge-based steering servers are used to enforce these decisions
- Moving steering servers to edge reduces the costs of multi-CDN management

BRİGHTCOVE®

ol logic Force these decisions anagement

CONCLUSIONS

MULTI-CDN DELIVERY IS REAL

- Brings numerous advantages and utilities (scale, reliability, QOE/QOS)
- With a diverse set of CDNs and popularity of content it can be used to reduce costs of delivery !
- This is rather unexpected, but very important utility!

CHALLENGES

- Requires solving a rather intricate optimization problem
- Requires minimum overhead of CDN traffic steering solution
- Requires low-cost real-time analytics

VARIATIONS AND FUTURE WORK

- More complex architectures (cascaded CDNs, etc.)
- Multi-regional streaming (optimal multi-regional traffic allocation)
- Live and mixed live + VOD delivery cases

BRİGHTCOVE®

DS) **ed to reduce costs of delivery !**

BRIGHTCOVE®